Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Vaccines (Basel) ; 11(7)2023 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-37514961

RESUMEN

African swine fever (ASF) is a viral disease, endemic to Africa, that causes high mortality when introduced into domestic pig populations. Since the emergence of p72-genotype II African swine fever virus (ASFV) in Georgia in 2007, an ASF epidemic has been spreading across Europe and many countries in Asia. The epidemic first reached Ukraine in 2012. To better understand the dynamics of spread of ASF in Ukraine, we analyzed spatial and temporal outbreak data reported in Ukraine between 2012 and mid-2023. The highest numbers of outbreaks were reported in 2017 (N = 163) and 2018 (N = 145), with overall peak numbers of ASF outbreaks reported in August (domestic pigs) and January (wild boars). While cases were reported from most of Ukraine, we found a directional spread from the eastern and northern borders towards the western and southern regions of Ukraine. Many of the early outbreaks (before 2016) were adjacent to the border, which is again true for more recent outbreaks in wild boar, but not for recent outbreaks in domestic pigs. Outbreaks prior to 2016 also occurred predominantly in areas with a below average domestic pig density. This new analysis suggests that wild boars may have played an important role in the introduction and early spread of ASF in Ukraine. However, in later years, the dynamic suggests human activity as the predominant driver of spread and a separation of ASF epizootics between domestic pigs and in wild boars. The decline in outbreaks since 2019 suggests that the implemented mitigation strategies are effective, even though long-term control or eradication remain challenging and will require continued intensive surveillance of ASF outbreak patterns.

2.
Viruses ; 15(3)2023 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-36992408

RESUMEN

Emerging RNA virus infections are a growing concern among domestic poultry industries due to the severe impact they can have on flock health and economic livelihoods. Avian paramyxoviruses (APMV; avulaviruses, AaV) are pathogenic, negative-sense RNA viruses that cause serious infections in the respiratory and central nervous systems. APMV was detected in multiple avian species during the 2017 wild bird migration season in Ukraine and studied using PCR, virus isolation, and sequencing. Of 4090 wild bird samples collected, mostly from southern Ukraine, eleven isolates were grown in ovo and identified for APMV serotype by hemagglutinin inhibition test as: APMV-1, APMV-4, APMV-6, and APMV-7. To build One Health's capacity to characterize APMV virulence and analyze the potential risks of spillover to immunologically naïve populations, we sequenced virus genomes in veterinary research labs in Ukraine using a nanopore (MinION) platform. RNA was extracted and amplified using a multiplex tiling primer approach to specifically capture full-length APMV-1 (n = 5) and APMV-6 (n = 2) genomes at high read depth. All APMV-1 and APMV-6 fusion (F) proteins possessed a monobasic cleavage site, suggesting these APMVs were likely low virulence, annually circulating strains. Utilization of this low-cost method will identify gaps in viral evolution and circulation in this understudied but important critical region for Eurasia.


Asunto(s)
Avulavirus , Virus de la Enfermedad de Newcastle , Animales , Ucrania/epidemiología , Filogenia , Animales Salvajes , Aves
3.
Emerg Microbes Infect ; 12(1): 2146537, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36356059

RESUMEN

African swine fever virus (ASFV), a large and complex DNA-virus circulating between soft ticks and indigenous suids in sub-Saharan Africa, has made its way into swine populations from Europe to Asia. This virus, causing a severe haemorrhagic disease (African swine fever) with very high lethality rates in wild boar and domestic pigs, has demonstrated a remarkably high genetic stability for over 10 years. Consequently, analyses into virus evolution and molecular epidemiology often struggled to provide the genetic basis to trace outbreaks while few resources have been dedicated to genomic surveillance on whole-genome level. During its recent incursion into Germany in 2020, ASFV has unexpectedly diverged into five clearly distinguishable linages with at least ten different variants characterized by high-impact mutations never identified before. Noticeably, all new variants share a frameshift mutation in the 3' end of the DNA polymerase PolX gene O174L, suggesting a causative role as possible mutator gene. Although epidemiological modelling supported the influence of increased mutation rates, it remains unknown how fast virus evolution might progress under these circumstances. Moreover, a tailored Sanger sequencing approach allowed us, for the first time, to trace variants with genomic epidemiology to regional clusters. In conclusion, our findings suggest that this new factor has the potential to dramatically influence the course of the ASFV pandemic with unknown outcome. Therefore, our work highlights the importance of genomic surveillance of ASFV on whole-genome level, the need for high-quality sequences and calls for a closer monitoring of future phenotypic changes of ASFV.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Porcinos , Animales , Virus de la Fiebre Porcina Africana/genética , Fiebre Porcina Africana/epidemiología , Sus scrofa , Europa (Continente)/epidemiología , Alemania
4.
Vector Borne Zoonotic Dis ; 21(12): 979-988, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34958264

RESUMEN

Highly pathogenic avian influenza viruses (HPAIV) can be carried long distances by migratory wild birds and by poultry trade. Highly pathogenic avian influenza (HPAI) is often lethal in domestic poultry and can sporadically infect and cause severe respiratory or systemic disease in other species including humans. Since 2003, the H5 subtype of HPAIV have spread from epicenters in China to neighboring regions in East and Southeast Asia, and across Central Asia to the Indian subcontinent, Europe, Africa, and North America. Outbreaks of H5N1 HPAIV struck poultry in Ukraine in 2005. In 2016, A H5N8 clade 2.3.4.4b HPAIV outbreaks occurred in wild and domestic birds in Ukraine concurrently with outbreaks in Central Europe, Russia, and the Middle East. We report outbreaks of HPAI in domestic backyard poultry in (2016-2017) in the southern region of Ukraine, in proximity to mass gathering sites for migratory waterfowl including mute swans (Cygnus olor). All eight genome segments of three novel H5N8 HPAIV isolated in November 2016 from two domestic backyard chickens (Gallus gallus) and one backyard mallard duck (Anas platyrhynchos) found dead of HPAI in Azov-Black Sea region of Ukraine were cladistically related to H5N8 2.3.4.4b HPAI viruses isolated from wild shelduck (Tadorna tadorna) and white-fronted goose (Anser albifrons) in Askania Nova Biopreserve (Kherson district, Ukraine) in 2016-2017 and to other contemporary H5N8 HPAIV strains sequenced from wild birds and poultry in Eurasia. Amino acid variations in hemagglutinin were outside of the polybasic cleavage site (PLREKRRKR/GLF), and D224G suggested avian-like receptor binding specificity; neuraminidase did not have mutations characteristic of oseltamivir drug resistance. Outbreaks of HPAI in Ukraine highlight the continual need for biosurveillance and genomic sequencing of avian influenza viruses along wild bird flyways and interfaces with domestic poultry in Eurasia.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A , Subtipo H5N8 del Virus de la Influenza A , Gripe Aviar , Animales , Animales Salvajes , Pollos , Brotes de Enfermedades/veterinaria , Subtipo H5N8 del Virus de la Influenza A/genética , Gripe Aviar/epidemiología , Reuniones Masivas , Filogenia , Ucrania/epidemiología
5.
Microbiol Resour Announc ; 9(49)2020 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-33273001

RESUMEN

The complete genome of Salmonella enterica subsp. enterica serovar Kottbus strain Kharkiv (serogroup C2-C3), which was isolated from a commercial pork production facility in Kharkiv, Ukraine, was assembled using long-read Nanopore sequences. A single circular contig (4,799,045 bp) comprised a complete chromosome encoding antibiotic resistance, highlighting the risk of cross-species livestock and human infection.

6.
Microbiol Resour Announc ; 8(42)2019 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-31624164

RESUMEN

Here, we report the complete genome sequence of an African swine fever (ASF) virus (ASFV/Kyiv/2016/131) isolated from the spleen of a domestic pig in Ukraine with a lethal case of African swine fever. Using only long-read Nanopore sequences, we assembled a full-length genome of 191,911 base pairs in a single contig.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA