Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Microbiol Spectr ; 11(6): e0275123, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37815349

RESUMEN

IMPORTANCE: Progressive multifocal leukoencephalopathy is a crimpling demyelinating disease of the central nervous system caused by JC polyomavirus (JCPyV). Much about JCPyV propagation in the brain remains obscure because of a lack of proper animal models to study the virus in the context of the disease, thus hampering efforts toward the development of new antiviral strategies. Here, having established a robust and representative model of JCPyV infection in human-induced pluripotent stem cell-derived astrocytes, we are able to fully characterize the effect of JCPyV on the biology of the cells and show that the proteomic signature observed for JCPyV-infected astrocytes is extended to extracellular vesicles (EVs). These data suggest that astrocyte-derived EVs found in body fluids might serve as a rich source of information relevant to JCPyV infection in the brain, opening avenues toward better understanding the pathogenesis of the virus and, ultimately, the identification of new antiviral targets.


Asunto(s)
Vesículas Extracelulares , Virus JC , Infecciones por Polyomavirus , Animales , Humanos , Virus JC/fisiología , Astrocitos , Proteómica , Antivirales
2.
Adv Mater ; 35(33): e2304197, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37282751

RESUMEN

The discovery of a novel long-lived metastable skyrmion phase in the multiferroic insulator Cu2 OSeO3 visualized with Lorentz transmission electron microscopy for magnetic fields below the equilibrium skyrmion pocket is reported. This phase can be accessed by exciting the sample non-adiabatically with near-infrared femtosecond laser pulses and cannot be reached by any conventional field-cooling protocol, referred as a hidden phase. From the strong wavelength dependence of the photocreation process and via spin-dynamics simulations, the magnetoelastic effect is identified as the most likely photocreation mechanism. This effect results in a transient modification of the magnetic free energy landscape extending the equilibrium skyrmion pocket to lower magnetic fields. The evolution of the photoinduced phase is monitored for over 15 min and no decay is found. Because such a time is much longer than the duration of any transient effect induced by a laser pulse in a material, it is assumed that the newly discovered skyrmion state is stable for practical purposes, thus breaking ground for a novel approach to control magnetic state on demand at ultrafast timescales and drastically reducing heat dissipation relevant for next-generation spintronic devices.

3.
ACS Nano ; 16(12): 20589-20597, 2022 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-36410735

RESUMEN

The absence of stray fields, their insensitivity to external magnetic fields, and ultrafast dynamics make antiferromagnets promising candidates for active elements in spintronic devices. Here, we demonstrate manipulation of the Néel vector in the metallic collinear antiferromagnet Mn2Au by combining strain and femtosecond laser excitation. Applying tensile strain along either of the two in-plane easy axes and locally exciting the sample by a train of femtosecond pulses, we align the Néel vector along the direction controlled by the applied strain. The dependence on the laser fluence and strain suggests the alignment is a result of optically triggered depinning of 90° domain walls and their motion in the direction of the free energy gradient, governed by the magneto-elastic coupling. The resulting, switchable state is stable at room temperature and insensitive to magnetic fields. Such an approach may provide ways to realize robust high-density memory device with switching time scales in the picosecond range.

4.
ACS Photonics ; 9(10): 3215-3224, 2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-36281329

RESUMEN

Spatiotemporal electron-beam shaping is a bold frontier of electron microscopy. Over the past decade, shaping methods evolved from static phase plates to low-speed electrostatic and magnetostatic displays. Recently, a swift change of paradigm utilizing light to control free electrons has emerged. Here, we experimentally demonstrate arbitrary transverse modulation of electron beams without complicated electron-optics elements or material nanostructures, but rather using shaped light beams. On-demand spatial modulation of electron wavepackets is obtained via inelastic interaction with transversely shaped ultrafast light fields controlled by an external spatial light modulator. We illustrate this method for the cases of Hermite-Gaussian and Laguerre-Gaussian modulation and discuss their use in enhancing microscope sensitivity. Our approach dramatically widens the range of patterns that can be imprinted on the electron profile and greatly facilitates tailored electron-beam shaping.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA