Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Cells ; 10(8)2021 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-34440729

RESUMEN

The cytoskeleton of the eukaryotic cell provides a structural and functional scaffold enabling biochemical and cellular functions. While actin and microtubules form the main framework of the cell, intermediate filament networks provide unique mechanical properties that increase the resilience of both the cytoplasm and the nucleus, thereby maintaining cellular function while under mechanical pressure. Intermediate filaments (IFs) are imperative to a plethora of regulatory and signaling functions in mechanotransduction. Mutations in all types of IF proteins are known to affect the architectural integrity and function of cellular processes, leading to debilitating diseases. The basic building block of all IFs are elongated α-helical coiled-coils that assemble hierarchically into complex meshworks. A remarkable mechanical feature of IFs is the capability of coiled-coils to metamorphize into ß-sheets under stress, making them one of the strongest and most resilient mechanical entities in nature. Here, we discuss structural and mechanical aspects of IFs with a focus on nuclear lamins and vimentin.


Asunto(s)
Citoesqueleto/metabolismo , Filamentos Intermedios/metabolismo , Actinas/metabolismo , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Humanos , Filamentos Intermedios/química , Laminas/metabolismo , Microtúbulos/metabolismo , Vimentina/metabolismo
2.
Nat Commun ; 11(1): 6205, 2020 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-33277502

RESUMEN

The nuclear lamina-a meshwork of intermediate filaments termed lamins-is primarily responsible for the mechanical stability of the nucleus in multicellular organisms. However, structural-mechanical characterization of lamin filaments assembled in situ remains elusive. Here, we apply an integrative approach combining atomic force microscopy, cryo-electron tomography, network analysis, and molecular dynamics simulations to directly measure the mechanical response of single lamin filaments in three-dimensional meshwork. Endogenous lamin filaments portray non-Hookean behavior - they deform reversibly at a few hundred picoNewtons and stiffen at nanoNewton forces. The filaments are extensible, strong and tough similar to natural silk and superior to the synthetic polymer Kevlar®. Graph theory analysis shows that the lamin meshwork is not a random arrangement of filaments but exhibits small-world properties. Our results suggest that lamin filaments arrange to form an emergent meshwork whose topology dictates the mechanical properties of individual filaments. The quantitative insights imply a role of meshwork topology in laminopathies.


Asunto(s)
Núcleo Celular/metabolismo , Filamentos Intermedios/metabolismo , Laminas/metabolismo , Lámina Nuclear/metabolismo , Algoritmos , Animales , Núcleo Celular/ultraestructura , Tomografía con Microscopio Electrónico/métodos , Células HeLa , Humanos , Filamentos Intermedios/ultraestructura , Laminas/ultraestructura , Ratones , Microscopía de Fuerza Atómica/métodos , Simulación de Dinámica Molecular , Lámina Nuclear/ultraestructura , Estrés Mecánico , Xenopus laevis
3.
Structure ; 27(10): 1517-1526.e3, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31422910

RESUMEN

G protein-coupled receptors (GPCRs) show complex relationships between functional states and conformational plasticity that can be qualitatively and quantitatively described by contouring their free energy landscape. However, how ligands modulate the free energy landscape to direct conformation and function of GPCRs is not entirely understood. Here, we employ single-molecule force spectroscopy to parametrize the free energy landscape of the human protease-activated receptor 1 (PAR1), and delineate the mechanical, kinetic, and energetic properties of PAR1 being set into different functional states. Whereas in the inactive unliganded state PAR1 adopts mechanically rigid and stiff conformations, upon agonist or antagonist binding the receptor mechanically softens, while increasing its conformational flexibility, and kinetic and energetic stability. By mapping the free energy landscape to the PAR1 structure, we observe key structural regions putting this conformational plasticity into effect. Our insight, complemented with previously acquired knowledge on other GPCRs, outlines a more general framework to understand how GPCRs stabilize certain functional states.


Asunto(s)
Guanidinas/farmacología , Oligopéptidos/farmacología , Fragmentos de Péptidos/farmacología , Receptor PAR-1/química , Receptor PAR-1/metabolismo , Sitios de Unión , Guanidinas/química , Humanos , Ligandos , Modelos Moleculares , Oligopéptidos/química , Fragmentos de Péptidos/química , Unión Proteica , Estructura Secundaria de Proteína , Receptor PAR-1/agonistas , Receptor PAR-1/antagonistas & inhibidores , Imagen Individual de Molécula
4.
Methods Mol Biol ; 2003: 107-144, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31218616

RESUMEN

The atomic force microscope (AFM) has opened avenues and provided opportunities to investigate biological soft matter and processes ranging from nanometer (nm) to millimeter (mm). The high temporal (millisecond) and spatial (nanometer) resolutions of the AFM are suited for studying many biological processes in their native conditions. The AFM cantilever-aptly termed as a "lab on a tip"-can be used as an imaging tool as well as a handle to manipulate single bonds and proteins. Recent examples have convincingly established AFM as a tool to study the mechanical properties and monitor processes of single proteins and cells with high sensitivity, thus affording insight into important mechanistic details. This chapter specifically focuses on practical and analytical protocols of single-molecule AFM methodologies related to high-resolution imaging and single-molecule force spectroscopy of transmembrane proteins in a lipid bilayer (reconstituted or native). Both these techniques are operator oriented, and require specialized working knowledge of the instrument, theory and practical skills.


Asunto(s)
Membrana Dobles de Lípidos/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas/metabolismo , Microscopía de Fuerza Atómica/métodos , Imagen Individual de Molécula/métodos
5.
Curr Opin Cell Biol ; 57: 25-32, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30412846

RESUMEN

G protein-coupled receptors (GPCRs) relay extracellular information across cell membranes through a continuum of conformations that are not always captured in structures. Hence, complementary approaches are required to quantify the physical and chemical properties of the dynamic conformations linking to GPCR function. Atomic force microscopy (AFM)-based high-resolution imaging and force spectroscopy are unique methods to scrutinize GPCRs and to sense their interactions. Here, we exemplify recent AFM-based applications to directly observe the supramolecular assembly of GPCRs in native membranes, to measure the ligand-binding free-energy landscape, and how interactions modulate the structural properties of GPCRs. Common trends in GPCR function are beginning to emerge. We envision that technical developments in combining AFM with superresolution fluorescence imaging will provide insights into how cellular states modulate GPCRs and vice versa.


Asunto(s)
Microscopía de Fuerza Atómica , Receptores Acoplados a Proteínas G/química , Animales , Membrana Celular/metabolismo , Humanos , Ligandos , Receptores Acoplados a Proteínas G/metabolismo , Imagen Individual de Molécula
6.
Annu Rev Anal Chem (Palo Alto Calif) ; 11(1): 375-395, 2018 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-29894225

RESUMEN

Single-molecule force spectroscopy (SMFS) has been widely applied to study the mechanical unfolding and folding of transmembrane proteins. Here, we review the recent progress in characterizing bacterial and human transmembrane ß-barrel proteins by SMFS. First, we describe the mechanical unfolding of transmembrane ß-barrels, which follows a general mechanism dictated by the sequential unfolding and extraction of individual ß-strands and ß-hairpins from membranes. Upon force relaxation, the unfolded polypeptide can insert stepwise into the membrane as single ß-strands or ß-hairpins to fold as the native ß-barrel. The refolding can be followed at a high spatial and temporal resolution, showing that small ß-barrels are able to fold without assistance, whereas large and complex ß-barrels require chaperone cofactors. Applied in the dynamic mode, SMFS can quantify the kinetic and mechanical properties of single ß-hairpins and reveal complementary insight into the membrane protein structure and function relationship. We further outline the challenges that SMFS experiments must overcome for a comprehensive understanding of the folding and function of transmembrane ß-barrel proteins.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/análisis , Proteínas de la Membrana Bacteriana Externa/ultraestructura , Microscopía de Fuerza Atómica , Imagen Individual de Molécula , Proteínas de la Membrana Bacteriana Externa/química , Humanos , Cinética , Pliegue de Proteína
7.
Structure ; 26(6): 829-838.e4, 2018 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-29731231

RESUMEN

The protease-activated receptor 1 (PAR1), a G protein-coupled receptor (GPCR) involved in hemostasis, thrombosis, and inflammation, is activated by thrombin or other coagulation proteases. This activation is inhibited by the irreversible antagonist vorapaxar used for anti-platelet therapy. Despite detailed structural and functional information, how vorapaxar binding alters the structural properties of PAR1 to prevent activation is hardly known. Here we apply dynamic single-molecule force spectroscopy to characterize how vorapaxar binding changes the mechanical, kinetic, and energetic properties of human PAR1 under physiologically relevant conditions. We detect structural segments stabilizing PAR1 and quantify their properties in the unliganded and the vorapaxar-bound state. In the presence of vorapaxar, most structural segments increase conformational variability, lifetime, and free energy, and reduce mechanical rigidity. These changes highlight a general trend in how GPCRs are affected by strong antagonists.


Asunto(s)
Lactonas/farmacología , Piridinas/farmacología , Receptor PAR-1/química , Receptor PAR-1/metabolismo , Humanos , Cinética , Modelos Moleculares , Unión Proteica , Conformación Proteica , Imagen Individual de Molécula
9.
Sci Rep ; 7: 45167, 2017 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-28367984

RESUMEN

Constructing a cell mimic is a major challenge posed by synthetic biologists. Efforts to this end have been primarily focused on lipid- and polymer-encapsulated containers, liposomes and polymersomes, respectively. Here, we introduce a multi-compartment, nested system comprising aqueous droplets stabilized in an oil/lipid mixture, all encapsulated in hydrogel. Functional capabilities (electrical and chemical communication) were imparted by protein nanopores spanning the lipid bilayer formed at the interface of the encapsulated aqueous droplets and the encasing hydrogel. Crucially, the compartmentalization enabled the formation of two adjoining lipid bilayers in a controlled manner, a requirement for the realization of a functional protocell or prototissue.


Asunto(s)
Células Artificiales , Hidrogeles , Gotas Lipídicas , Membrana Dobles de Lípidos , Nanoporos , Proteínas , Biología Sintética/métodos , Agua
10.
Nature ; 543(7644): 261-264, 2017 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-28241138

RESUMEN

The nuclear lamina is a fundamental constituent of metazoan nuclei. It is composed mainly of lamins, which are intermediate filament proteins that assemble into a filamentous meshwork, bridging the nuclear envelope and chromatin. Besides providing structural stability to the nucleus, the lamina is involved in many nuclear activities, including chromatin organization, transcription and replication. However, the structural organization of the nuclear lamina is poorly understood. Here we use cryo-electron tomography to obtain a detailed view of the organization of the lamin meshwork within the lamina. Data analysis of individual lamin filaments resolves a globular-decorated fibre appearance and shows that A- and B-type lamins assemble into tetrameric filaments of 3.5 nm thickness. Thus, lamins exhibit a structure that is remarkably different from the other canonical cytoskeletal elements. Our findings define the architecture of the nuclear lamin meshworks at molecular resolution, providing insights into their role in scaffolding the nuclear lamina.


Asunto(s)
Laminas/química , Laminas/ultraestructura , Lámina Nuclear/química , Lámina Nuclear/ultraestructura , Animales , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Cromatina/ultraestructura , Microscopía por Crioelectrón , Citoesqueleto/química , Citoesqueleto/metabolismo , Citoesqueleto/ultraestructura , Humanos , Proteínas de Filamentos Intermediarios/química , Proteínas de Filamentos Intermediarios/metabolismo , Proteínas de Filamentos Intermediarios/ultraestructura , Laminas/metabolismo , Ratones , Lámina Nuclear/metabolismo , Tomografía
11.
Cell Adh Migr ; 10(5): 568-575, 2016 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-27104281

RESUMEN

The primary physiological function of blood platelets is to seal vascular lesions after injury and form hemostatic thrombi in order to prevent blood loss. This task relies on the formation of strong cellular-extracellular matrix interactions in the subendothelial lesions. The cytoskeleton of a platelet is key to all of its functions: its ability to spread, adhere and contract. Despite the medical significance of platelets, there is still no high-resolution structural information of their cytoskeleton. Here, we discuss and present 3-dimensional (3D) structural analysis of intact platelets by using cryo-electron tomography (cryo-ET) and atomic force microscopy (AFM). Cryo-ET provides in situ structural analysis and AFM gives stiffness maps of the platelets. In the future, combining high-resolution structural and mechanical techniques will bring new understanding of how structural changes modulate platelet stiffness during activation and adhesion.


Asunto(s)
Plaquetas/citología , Plaquetas/fisiología , Animales , Fenómenos Biomecánicos , Humanos , Integrinas/metabolismo , Modelos Biológicos , Tomografía
12.
J Struct Biol ; 193(3): 181-187, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26767592

RESUMEN

Platelets are essential for hemostasis and wound healing. They are involved in fundamental processes of vascular biology such as angiogenesis, tissue regeneration, and tumor metastasis. Upon activation, platelets shed small plasma membrane vesicles termed platelet-derived microparticles (PMPs). PMPs include functional cell adhesion machinery that comprises transmembrane receptors (most abundant are the αIIbß3 integrins), cytoskeletal systems and a large variety of adapter and signaling molecules. Glanzmann thrombasthenia (GT) is a condition characterized by platelets that are deficient of the integrin αIIbß3 heterodimer. Here, we use cryo-electron tomography (cryo-ET) to study the structural organization of PMPs (in both healthy and GT patients), especially the cytoskeleton organization and receptor architecture. PMPs purified from GT patients show a significantly altered cytoskeletal organization, characterized by a reduced number of filaments present, compared to the healthy control. Furthermore, our results show that incubating healthy PMPs with manganese ions (Mn(2+)), in the presence of fibrinogen, induces a major conformational change of integrin receptors, whereas thrombin activation yields a moderate response. These results provide the first insights into the native molecular organization of PMPs.


Asunto(s)
Plaquetas/química , Micropartículas Derivadas de Células/química , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/química , Trombastenia/sangre , Plaquetas/metabolismo , Plaquetas/ultraestructura , Adhesión Celular/genética , Micropartículas Derivadas de Células/metabolismo , Micropartículas Derivadas de Células/ultraestructura , Microscopía por Crioelectrón , Citoesqueleto/química , Citoesqueleto/metabolismo , Citoesqueleto/ultraestructura , Fibrinógeno/química , Fibrinógeno/metabolismo , Humanos , Manganeso/química , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/metabolismo , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/ultraestructura , Trombastenia/patología , Trombina/química , Trombina/metabolismo
13.
Nat Methods ; 12(7): 634-6, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25961413

RESUMEN

We developed a method for visualizing tissues from multicellular organisms using cryo-electron tomography. Our protocol involves vitrifying samples with high-pressure freezing, thinning them with cryo-FIB-SEM (focused-ion-beam scanning electron microscopy) and applying fiducial gold markers under cryogenic conditions to the lamellae post-milling. We applied this protocol to acquire tomograms of vitrified Caenorhabditis elegans embryos and worms, which showed the intracellular organization of selected tissues at particular developmental stages in otherwise intact specimens.


Asunto(s)
Microscopía por Crioelectrón/métodos , Tomografía con Microscopio Electrónico/métodos , Animales , Caenorhabditis elegans/embriología , Caenorhabditis elegans/ultraestructura , Microscopía Electrónica de Rastreo
14.
Arch Biochem Biophys ; 581: 78-85, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-25921875

RESUMEN

Structural analysis of macromolecular assemblies and their remodeling during physiological processes is instrumental to defining the fundament of cellular and molecular biology. Recent advances in computational and analytical tools for cryo-electron tomography have enabled the study of macromolecular structures in their native environment, providing unprecedented insights into cell function. Moreover, the recent implementation of direct electron detectors has progressed cryo-electron tomography to a stage where it can now be applied to the reconstruction of macromolecular structures at high resolutions. Here, we discuss some of the recent technical developments in cryo-electron tomography to reveal structures of macromolecular complexes in their physiological medium, focusing mainly on eukaryotic cells.


Asunto(s)
Microscopía por Crioelectrón/métodos , Microscopía por Crioelectrón/tendencias , Tomografía con Microscopio Electrónico/métodos , Tomografía con Microscopio Electrónico/tendencias
15.
ACS Nano ; 8(1): 771-9, 2014 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-24341760

RESUMEN

Previously, we reported the manual assembly of lipid-coated aqueous droplets in oil to form two-dimensional (2D) networks in which the droplets are connected through single lipid bilayers. Here we assemble lipid-coated droplets in robust, freestanding 3D geometries: for example, a 14-droplet pyramidal assembly. The networks are designed, and each droplet is placed in a designated position. When protein pores are inserted in the bilayers between specific constituent droplets, electrical and chemical communication pathways are generated. We further describe an improved means to construct 3D droplet networks with defined organizations by the manipulation of aqueous droplets containing encapsulated magnetic beads. The droplets are maneuvered in a magnetic field to form simple construction modules, which are then used to form larger 2D and 3D structures including a 10-droplet pyramid. A methodology to construct freestanding, functional 3D droplet networks is an important step toward the programmed and automated manufacture of synthetic minimal tissues.


Asunto(s)
Lípidos/química , Agua/química , Magnetismo
16.
Biochem Soc Trans ; 41(5): 1159-65, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24059502

RESUMEN

Realization of a functional artificial cell, the so-called protocell, is a major challenge posed by synthetic biology. A subsequent goal is to use the protocellular units for the bottom-up assembly of prototissues. There is, however, a looming chasm in our knowledge between protocells and prototissues. In the present paper, we give a brief overview of the work on protocells to date, followed by a discussion on the rational design of key structural elements specific to linking two protocellular bilayers. We propose that designing synthetic parts capable of simultaneous insertion into two bilayers may be crucial in the hierarchical assembly of protocells into a functional prototissue.


Asunto(s)
Células Artificiales , Membrana Dobles de Lípidos/química , Biología Sintética , Ingeniería de Tejidos , Células Artificiales/química , Humanos , Proteínas de la Membrana/química , Porinas/química
17.
Nat Commun ; 4: 1725, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23591892

RESUMEN

The bottom-up construction of artificial tissues is an underexplored area of synthetic biology. An important challenge is communication between constituent compartments of the engineered tissue, and between the engineered tissue and additional compartments, including extracellular fluids, further engineered tissue and living cells. Here we present a dimeric transmembrane pore that can span two adjacent lipid bilayers, and thereby allow aqueous compartments to communicate. Two heptameric staphylococcal α-hemolysin pores were covalently linked in an aligned cap-to-cap orientation. The structure of the dimer, (α7)2, was confirmed by biochemical analysis, transmission electron microscopy and single-channel electrical recording. We show that one of two ß-barrels of (α7)2 can insert into the lipid bilayer of a small unilamellar vesicle, while the other spans a planar lipid bilayer. The (α7)2 pores spanning two bilayers were also observed by transmission electron microscopy.


Asunto(s)
Membrana Dobles de Lípidos , Proteínas/química , Secuencia de Bases , Ciclodextrinas/química , Cartilla de ADN , Dimerización , Microscopía Electrónica de Transmisión , Simulación de Dinámica Molecular , Reacción en Cadena de la Polimerasa , Proteínas/genética
18.
Methods Mol Biol ; 974: 73-110, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23404273

RESUMEN

The atomic force microscope (AFM) has opened vast avenues hitherto inaccessible to the biological scientist. The high temporal (millisecond) and spatial (nanometer) resolutions of the AFM are suited for studying many biological processes in their native conditions. The AFM cantilever stylus is aptly termed as a "lab on a tip" owing to its versatility as an imaging tool as well as a handle to manipulate single bonds and proteins. Recent examples assert that the AFM can be used to study the mechanical properties and monitor processes of single proteins and single cells, thus affording insight into important mechanistic details. This chapter specifically focuses on practical and analytical protocols of single-molecule AFM methodologies related to high-resolution imaging and single-molecule force spectroscopy of membrane proteins. Both these techniques are operator oriented, and require specialized working knowledge of the instrument, theoretical, and practical skills.


Asunto(s)
Membrana Dobles de Lípidos/metabolismo , Proteínas de la Membrana/metabolismo , Microscopía de Fuerza Atómica/métodos , Análisis Espectral/métodos , Bacteriorodopsinas/química , Bacteriorodopsinas/metabolismo , Bacteriorodopsinas/ultraestructura , Halobacterium salinarum/metabolismo , Imagenología Tridimensional , Proteínas de la Membrana/ultraestructura , Desplegamiento Proteico , Termodinámica
19.
Sci Rep ; 2: 848, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23152939

RESUMEN

Recently, two-dimensional networks of aqueous droplets separated by lipid bilayers, with engineered protein pores as functional elements, were used to construct millimeter-sized devices such as a light sensor, a battery, and half- and full-wave rectifiers. Here, for the first time, we show that hydrogel shapes, coated with lipid monolayers, can be used as building blocks for such networks, yielding scalable electrical circuits and mechanical devices. Examples include a mechanical switch, a rotor driven by a magnetic field and painted circuits, analogous to printed circuit boards, made with centimeter-length agarose wires. Bottom-up fabrication with lipid-coated hydrogel shapes is therefore a useful step towards the synthetic biology of functional devices including minimal tissues.


Asunto(s)
Equipos y Suministros Eléctricos , Hidrogeles/química , Membrana Dobles de Lípidos/química , Lípidos/química
20.
Proteomics ; 10(23): 4151-62, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21058339

RESUMEN

We applied dynamic single-molecule force spectroscopy to quantify the parameters (free energy of activation and distance of the transition state from the folded state) characterizing the energy barriers in the unfolding energy landscape of the outer membrane protein G (OmpG) from Escherichia coli. The pH-dependent functional switching of OmpG directs the protein along different regions on the unfolding energy landscape. The two functional states of OmpG take the same unfolding pathway during the sequential unfolding of ß-hairpins I-IV. After the initial unfolding events, the unfolding pathways diverge. In the open state, the unfolding of ß-hairpin V in one step precedes the unfolding of ß-hairpin VI. In the closed state, ß-hairpin V and ß-strand S11 with a part of extracellular loop L6 unfold cooperatively, and subsequently ß-strand S12 unfolds with the remaining loop L6. These two unfolding pathways in the open and closed states join again in the last unfolding step of ß-hairpin VII. Also, the conformational change from the open to the closed state witnesses a rigidified extracellular gating loop L6. Thus, a change in the conformational state of OmpG not only bifurcates its unfolding pathways but also tunes its mechanical properties for optimum function.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/química , Proteínas de Escherichia coli/química , Porinas/química , Secuencias de Aminoácidos , Estabilidad Proteica , Estructura Secundaria de Proteína , Desplegamiento Proteico , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA