Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
J Toxicol Sci ; 41(3): 391-402, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27193731

RESUMEN

Manganese (Mn) is used in industrial metal alloys and can be released into the atmosphere during methylcyclopentadienyl manganese tricarbonyl combustion. Increased Mn deposition in the brain after long-term exposure to the metal by inhalation is associated with altered dopamine metabolism and neurobehavioral problems, including impaired motor skills. However, neurotoxic effects of short-term exposure to inhaled Mn are not completely characterized. The purpose of this study is to define the neurobehavioral and neurochemical effects of short-term inhalation exposure to Mn at a high concentration using rats. Male Sprague-Dawley rats were exposed to MnCl2 aerosol in a nose-only inhalation chamber for 3 weeks (1.2 µm, 39 mg/m(3)). Motor coordination was tested on the day after the last exposure using a rotarod device at a fixed speed of 10 rpm for 2 min. Also, dopamine transporter and dopamine receptor protein expression levels in the striatum region of the brain were determined by Western blot analysis. At a rotarod speed of 10 rpm, there were no significant differences in the time on the bar before the first fall or the number of falls during the two-minute test observed in the exposed rats, as compared with controls. The Mn-exposed group had significantly higher Mn levels in the lung, blood, olfactory bulb, prefrontal cortex, striatum, and cerebellum compared with the control group. A Mn concentration gradient was observed from the olfactory bulb to the striatum, supporting the idea that Mn is transported via the olfactory pathway. Our results demonstrated that inhalation exposure to 39 mg/m(3) Mn for 3 weeks induced mild lung injury and modulation of dopamine transporter expression in the brain, without altering motor activity.


Asunto(s)
Conducta Animal/efectos de los fármacos , Encéfalo/efectos de los fármacos , Cloruros/toxicidad , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Exposición por Inhalación , Intoxicación por Manganeso/etiología , Actividad Motora/efectos de los fármacos , Animales , Encéfalo/metabolismo , Encéfalo/patología , Encéfalo/fisiopatología , Cloruros/metabolismo , Lesión Pulmonar/inducido químicamente , Lesión Pulmonar/patología , Masculino , Compuestos de Manganeso/metabolismo , Intoxicación por Manganeso/metabolismo , Intoxicación por Manganeso/fisiopatología , Intoxicación por Manganeso/psicología , Ratas Sprague-Dawley , Receptores Dopaminérgicos/metabolismo , Medición de Riesgo , Prueba de Desempeño de Rotación con Aceleración Constante , Factores de Tiempo , Regulación hacia Arriba
2.
Toxicol Res ; 30(2): 83-90, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25071917

RESUMEN

An increasing number of recent studies have focused on the impact of particulate matter on human health. As a model for atmospheric particulate inhalation, we investigated the effects of inhaled carbon black nanoparticles (CBNP) on mice with bleomycin-induced pulmonary fibrosis. The CNBPs were generated by a novel aerosolization process, and the mice were exposed to the aerosol for 4 hours. We found that CBNP inhalation exacerbated lung inflammation, as evidenced by histopathology analysis and by the expression levels of interleukin-6 protein, fibronectin, and interferon-γ mRNAs in lung tissues. Notably, fibronectin mRNA expression showed a statistically significant increase in expression after CBNP exposure. These data suggest that the concentration of CBNPs delivered (calculated to be 12.5 µg/m(3)) can aggravate lung inflammation in mice. Our results also suggest that the inhalation of ultrafine particles like PM 2.5 is an impactful environmental risk factor for humans, particularly in susceptible populations with predisposing lung conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA