Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Neurobiol Dis ; 154: 105344, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33766652

RESUMEN

INTRODUCTION: A variety of transgenic and knock-in mice that express mutant alleles of Amyloid precursor protein (APP) have been used to model the effects of amyloid-beta (Aß) on circuit function in Alzheimer's disease (AD); however phenotypes described in these mice may be affected by expression of mutant APP or proteolytic cleavage products independent of Aß. In addition, the effects of mutant APP expression are attributed to elevated expression of the amyloidogenic, 42-amino acid-long species of Aß (Aß42) associated with amyloid plaque accumulation in AD, though elevated concentrations of Aß40, an Aß species produced with normal synaptic activity, may also affect neural function. METHODS: To explore the effects of elevated expression of Aß on synaptic function in vivo, we assessed visual system plasticity in transgenic mice that express and secrete Aß throughout the brain in the absence of APP overexpression. Transgenic mice that express either Aß40 or Aß42 were assayed for their ability to appropriately demonstrate ocular dominance plasticity following monocular deprivation. RESULTS: Using two complementary approaches to measure the plastic response to monocular deprivation, we find that male and female mice that express either 40- or 42-amino acid-long Aß species demonstrate a plasticity defect comparable to that elicited in transgenic mice that express mutant alleles of APP and Presenilin 1 (APP/PS1 mice). CONCLUSIONS: These data support the hypothesis that mutant APP-driven plasticity impairment in mouse models of AD is mediated by production and accumulation of Aß. Moreover, these findings suggest that soluble species of Aß are capable of modulating synaptic plasticity, likely independent of any aggregation. These findings may have implications for the role of soluble species of Aß in both development and disease settings.


Asunto(s)
Péptidos beta-Amiloides/biosíntesis , Predominio Ocular/fisiología , Plasticidad Neuronal/fisiología , Fragmentos de Péptidos/biosíntesis , Corteza Visual/metabolismo , Péptidos beta-Amiloides/genética , Animales , Femenino , Masculino , Ratones , Ratones Transgénicos , Fragmentos de Péptidos/genética
2.
J Neurosci ; 37(41): 9880-9888, 2017 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-28899917

RESUMEN

Activity-dependent synaptic plasticity plays a critical role in the refinement of circuitry during postnatal development and may be disrupted in conditions that cause intellectual disability, such as Down syndrome (DS). To test this hypothesis, visual cortical plasticity was assessed in Ts65Dn mice that harbor a chromosomal duplication syntenic to human chromosome 21q. We find that Ts65Dn mice demonstrate a defect in ocular dominance plasticity (ODP) following monocular deprivation. This phenotype is similar to that of transgenic mice that express amyloid precursor protein (APP), which is duplicated in DS and in Ts65DN mice; however, normalizing APP gene copy number in Ts65Dn mice fails to rescue plasticity. Ts1Rhr mice harbor a duplication of the telomeric third of the Ts65Dn-duplicated sequence and demonstrate the same ODP defect, suggesting a gene or genes sufficient to drive the phenotype are located in that smaller duplication. In addition, we find that Ts65Dn mice demonstrate an abnormality in olfactory system connectivity, a defect in the refinement of connections to second-order neurons in the olfactory bulb. Ts1Rhr mice do not demonstrate a defect in glomerular refinement, suggesting that distinct genes or sets of genes underlie visual and olfactory system phenotypes. Importantly, these data suggest that developmental plasticity and connectivity are impaired in sensory systems in DS model mice, that such defects may contribute to functional impairment in DS, and that these phenotypes, present in male and female mice, provide novel means for examining the genetic and molecular bases for neurodevelopmental impairment in model mice in vivoSIGNIFICANCE STATEMENT Our understanding of the basis for intellectual impairment in Down syndrome is hindered by the large number of genes duplicated in Trisomy 21 and a lack of understanding of the effect of disease pathology on the function of neural circuits in vivo This work describes early postnatal developmental abnormalities in visual and olfactory sensory systems in Down syndrome model mice, which provide insight into defects in the function of neural circuits in vivo and provide an approach for exploring the genetic and molecular basis for impairment in the disease. In addition, these findings raise the possibility that basic dysfunction in primary sensory circuitry may illustrate mechanisms important for global learning and cognitive impairment in Down syndrome patients.


Asunto(s)
Síndrome de Down/fisiopatología , Vías Olfatorias/fisiopatología , Olfato , Visión Ocular , Vías Visuales/fisiopatología , Animales , Ceguera/fisiopatología , Proteínas del Citoesqueleto/genética , Predominio Ocular , Femenino , Masculino , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/genética , Plasticidad Neuronal , Corteza Visual/fisiopatología
3.
EMBO J ; 34(24): 3028-41, 2015 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-26538322

RESUMEN

In Alzheimer's disease and tauopathies, tau protein aggregates into neurofibrillary tangles that progressively spread to synaptically connected brain regions. A prion-like mechanism has been suggested: misfolded tau propagating through the brain seeds neurotoxic aggregation of soluble tau in recipient neurons. We use transgenic mice and viral tau expression to test the hypotheses that trans-synaptic tau propagation, aggregation, and toxicity rely on the presence of endogenous soluble tau. Surprisingly, mice expressing human P301Ltau in the entorhinal cortex showed equivalent tau propagation and accumulation in recipient neurons even in the absence of endogenous tau. We then tested whether the lack of endogenous tau protects against misfolded tau aggregation and toxicity, a second prion model paradigm for tau, using P301Ltau-overexpressing mice with severe tangle pathology and neurodegeneration. Crossed onto tau-null background, these mice had similar tangle numbers but were protected against neurotoxicity. Therefore, misfolded tau can propagate across neural systems without requisite templated misfolding, but the absence of endogenous tau markedly blunts toxicity. These results show that tau does not strictly classify as a prion protein.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Proteínas tau/genética , Animales , Células Cultivadas , Corteza Entorrinal/citología , Corteza Entorrinal/metabolismo , Ratones , Ratones Endogámicos C57BL , Mutación Missense , Neuronas/metabolismo , Proteínas tau/deficiencia , Proteínas tau/metabolismo
4.
Acta Neuropathol Commun ; 3: 14, 2015 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-25853174

RESUMEN

INTRODUCTION: In early stages of Alzheimer's disease (AD), neurofibrillary tangles (NFT) are largely restricted to the entorhinal cortex and medial temporal lobe. At later stages, when clinical symptoms generally occur, NFT involve widespread limbic and association cortices. At this point in the disease, amyloid plaques are also abundantly distributed in the cortex. This observation from human neuropathological studies led us to pose two alternative hypotheses: that amyloid in the cortex is permissive for the spread of tangles from the medial temporal lobe, or that these are co-occurring but not causally related events simply reflecting progression of AD pathology. RESULTS: We now directly test the hypothesis that cortical amyloid acts as an accelerant for spreading of tangles beyond the medial temporal lobe. We crossed rTgTauEC transgenic mice that demonstrate spread of tau from entorhinal cortex to other brain structures at advanced age with APP/PS1 mice, and examined mice with either NFTs, amyloid pathology, or both. We show that concurrent amyloid deposition in the cortex 1) leads to a dramatic increase in the speed of tau propagation and an extraordinary increase in the spread of tau to distal brain regions, and 2) significantly increases tau-induced neuronal loss. CONCLUSIONS: These data strongly support the hypothesis that cortical amyloid accelerates the spread of tangles throughout the cortex and amplifies tangle-associated neural system failure in AD.


Asunto(s)
Enfermedad de Alzheimer/patología , Amiloide/metabolismo , Encéfalo/patología , Ovillos Neurofibrilares/patología , Neuronas/patología , Proteínas tau/metabolismo , Envejecimiento/metabolismo , Envejecimiento/patología , Enfermedad de Alzheimer/metabolismo , Amiloide/toxicidad , Animales , Encéfalo/metabolismo , Corteza Cerebral/patología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Hipocampo/patología , Humanos , Ratones , Ratones Transgénicos , Ovillos Neurofibrilares/metabolismo , Lóbulo Temporal/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA