RESUMEN
Haemophilic arthropathy (HA), a common comorbidity in haemophilic patients leads to joint pain, deformity and reduced quality of life. We have recently demonstrated that a long non-coding RNA, Neat1 as a primary regulator of matrix metalloproteinase (MMP) 3 and MMP13 activity, and its induction in the target joint has a deteriorating effect on articular cartilage. In the present study, we administered an Adeno-associated virus (AAV) 5 vector carrying an short hairpin (sh)RNA to Neat1 via intra-articular injection alone or in conjunction with systemic administration of a capsid-modified AAV8 (K31Q) vector carrying F8 gene (F8-BDD-V3) to study its impact on HA. AAV8K31Q-F8 vector administration at low dose, led to an increase in FVIII activity (16%-28%) in treated mice. We further observed a significant knockdown of Neat1 (~40 fold vs. untreated injured joint, p = 0.005) in joint tissue of treated mice and a downregulation of chondrodegenerative enzymes, MMP3, MMP13 and the inflammatory mediator- cPLA2, in mice receiving combination therapy. These data demonstrate that AAV mediated Neat1 knockdown in combination with F8 gene augmentation can potentially impact mediators of haemophilic joint disease.
Asunto(s)
Dependovirus , Factor VIII , Vectores Genéticos , Hemofilia A , Metaloproteinasa 13 de la Matriz , Metaloproteinasa 3 de la Matriz , ARN Largo no Codificante , Animales , Hemofilia A/genética , Hemofilia A/terapia , Hemofilia A/complicaciones , Dependovirus/genética , ARN Largo no Codificante/genética , Metaloproteinasa 13 de la Matriz/metabolismo , Metaloproteinasa 13 de la Matriz/genética , Ratones , Metaloproteinasa 3 de la Matriz/genética , Metaloproteinasa 3 de la Matriz/metabolismo , Vectores Genéticos/genética , Vectores Genéticos/administración & dosificación , Factor VIII/genética , Factor VIII/metabolismo , Artropatías/terapia , Artropatías/genética , Artropatías/etiología , Humanos , Terapia Genética/métodos , Ratones Endogámicos C57BL , Cartílago Articular/metabolismo , Cartílago Articular/patología , Modelos Animales de Enfermedad , MasculinoRESUMEN
It is crucial to develop a long-term therapy that targets hemophilia A and B, including inhibitor-positive patients. We have developed an Adeno-associated virus (AAV) based strategy to integrate the bypass coagulation factor, activated FVII (murine, mFVIIa) gene into the Rosa26 locus using Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 mediated gene-editing. AAV vectors designed for expression of guide RNA (AAV8-gRNA), Cas9 (AAV2 neddylation mutant-Cas9), and mFVIIa (AAV8-mFVIIa) flanked by homology arms of the target locus were validated in vitro. Hemophilia B mice were administered with AAV carrying gRNA, Cas9 (1 × 1011 vgs/mouse), and mFVIIa with homology arms (2 × 1011 vgs/mouse) with appropriate controls. Functional rescue was documented with suitable coagulation assays at various time points. The data from the T7 endonuclease assay revealed a cleavage efficiency of 20-42 %. Further, DNA sequencing confirmed the targeted integration of mFVIIa into the safe-harbor Rosa26 locus. The prothrombin time (PT) assay revealed a significant reduction in PT in mice that received the gene-editing vectors (22 %), and a 13 % decline in mice that received only the AAV-FVIIa when compared to mock treated mice, 8 weeks after vector administration. Furthermore, FVIIa activity in mice that received triple gene-editing vectors was higher (122.5mIU/mL vs 28.8mIU/mL) than the mock group up to 15 weeks post vector administration. A hemostatic challenge by tail clip assay revealed that hemophilia B mice injected with only FVIIa or the gene-editing vectors had significant reduction in blood loss. In conclusion, AAV based gene-editing facilitates sustained expression of coagulation FVIIa and phenotypic rescue in hemophilia B mice.
Asunto(s)
Dependovirus , Modelos Animales de Enfermedad , Hemofilia B , Animales , Hemofilia B/terapia , Hemofilia B/genética , Dependovirus/genética , Ratones , Fenotipo , Edición Génica/métodos , Hemorragia/genética , Hemorragia/terapia , Factor VIIa , Humanos , Terapia Genética/métodos , Ratones Endogámicos C57BL , Vectores Genéticos , Sistemas CRISPR-Cas , Ingeniería Genética/métodosRESUMEN
Hemophilic arthropathy (HA) due to repeated bleeding into the joint cavity is a major cause of morbidity in patients with hemophilia. The molecular mechanisms contributing to this condition are not well characterized. MicroRNAs (miRs) are known to modulate the phenotype of multiple joint diseases such as osteoarthritis (OA) and rheumatoid arthritis (RA). Since miR125a is known to modulate disease progression in OA and RA, we performed a targeted screen of miR125a-5p and its target genes in a murine model of chronic HA. A digital PCR analysis demonstrated significant downregulation of miR125a-5p (2-fold vs control joint). Further molecular evaluation revealed elevated expression of the immunological markers STAT1 (7.6-fold vs control joint) and TRAF6 (10.6 fold vs control joint), which are direct targets of miR125a-5p. We then studied the impact of targeted overexpression of miR125a-5p using an Adeno-associated virus (AAV) vector in modulating the molecular mediators of HA. AAV5-miR125a vectors were administered intra-articularly either alone or in combination with a low dose of AAV8-based human factor 8 (F8) gene in a murine model of HA. We observed significantly increased expression of miR125a-5p in AAV5-miR125a administered mice (~12 fold vs injured joint) or in combination with AAV8-F8 vectors (~44 fold vs injured joint). The activity assay revealed ~17 %-20 % FVIII levels in mice that received low dose liver-directed F8 gene therapy. Further immunohistochemical analysis, demonstrated a decrease in inflammatory markers (STAT1 and TRAF6) and cartilage-degrading matrix metalloproteinases (MMPs) 3, 9, 13 in the joints of treated animals. These data highlight the crucial role of miR125a-5p in the development of HA.
Asunto(s)
Hemofilia A , Artropatías , Humanos , Ratones , Animales , Factor VIII/genética , Factor VIII/uso terapéutico , Factor VIII/metabolismo , Factor 6 Asociado a Receptor de TNF/metabolismo , Modelos Animales de Enfermedad , Artropatías/genética , Hemofilia A/complicaciones , Hemofilia A/genética , Hemofilia A/metabolismoRESUMEN
A major cause of infertility in women is impaired ovulation or oogenesis. In this issue of Cell Reports Medicine, Kanatsu-Shinohara et al.1 demonstrate the potential of gene delivery with adeno-associated virus that can cross the blood-follicle barrier and restore oogenesis in congenitally infertile mice.