Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
NPJ Vaccines ; 7(1): 39, 2022 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-35322047

RESUMEN

The envelope (E) protein of flaviviruses is functionally associated with viral tissue tropism and pathogenicity. For yellow fever virus (YFV), viscerotropic disease primarily involving the liver is pathognomonic for wild-type (WT) infection. In contrast, the live-attenuated vaccine (LAV) strain 17D does not cause viscerotropic disease and reversion to virulence is associated with neurotropic disease. The relationship between structure-function of the E protein for WT strain Asibi and its LAV derivative 17D strain is poorly understood; however, changes to WT and vaccine epitopes have been associated with changes in virulence. Here, a panel of Asibi and 17D infectious clone mutants were generated with single-site mutations at the one membrane residue and each of the eight E protein amino acid substitutions that distinguish the two strains. The mutants were characterized with respect to WT-specific and vaccine-specific monoclonal antibodies (mAbs) binding to virus plus binding of virus to brain, liver, and lung membrane receptor preparations (MRPs) generated from AG129 mice. This approach shows that amino acids in the YFV E protein domains (ED) I and II contain the WT E protein epitope, which overlap with those that mediate YFV binding to mouse liver. Furthermore, amino acids in EDIII associated with the vaccine epitope overlap with those that facilitate YFV binding mouse brain MRPs. Taken together, these data suggest that the YFV E protein is a key determinant in the phenotype of WT and 17D vaccine strains of YFV.

2.
NPJ Vaccines ; 6(1): 27, 2021 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-33597526

RESUMEN

Although live attenuated vaccines (LAVs) have been effective in the control of flavivirus infections, to date they have been excluded from Zika virus (ZIKV) vaccine trials due to safety concerns. We have previously reported two ZIKV mutants, each of which has a single substitution in either envelope (E) glycosylation or nonstructural (NS) 4B P36 and displays a modest reduction in mouse neurovirulence and neuroinvasiveness, respectively. Here, we generated a ZIKV mutant, ZE4B-36, which combines mutations in both E glycosylation and NS4B P36. The ZE4B-36 mutant is stable and attenuated in viral replication. Next-generation sequence analysis showed that the attenuating mutations in the E and NS4B proteins are retained during serial cell culture passages. The mutant exhibits a significant reduction in neuroinvasiveness and neurovirulence and low infectivity in mosquitoes. It induces robust ZIKV-specific memory B cell, antibody, and T cell-mediated immune responses in type I interferon receptor (IFNR) deficient mice. ZIKV-specific T cell immunity remains strong months post-vaccination in wild-type C57BL/6 (B6) mice. Vaccination with ZE4B-36 protects mice from ZIKV-induced diseases and vertical transmission. Our results suggest that combination mutations in E glycosylation and NS4B P36 contribute to a candidate LAV with significantly increased safety but retain strong immunogenicity for prevention and control of ZIKV infection.

3.
Am J Trop Med Hyg ; 103(3): 970-975, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32602433

RESUMEN

Nine criteria regarding the infectious agent, mode of transmission, portal of entry, route of spread, target organs, target cells, pathologic lesions, incubation period, and modifiable spectrum of disease and outcomes appropriate to the intended experimental purpose are described. To provide context for each criterion, mouse models of two vector-borne zoonotic infectious diseases, scrub typhus and dengue, are summarized. Application of the criteria indicates that intravenous inoculation of Orientia tsutsugamushi into inbred mice is the best current model for life-threatening scrub typhus, and intradermal inoculation accurately models sublethal human scrub typhus, whereas the immunocompromised mouse models of dengue provide disease outcomes most closely associated with human dengue. In addition to addressing basic questions of immune and pathogenic mechanisms, mouse models are useful for preclinical testing of experimental vaccines and therapeutics. The nine criteria serve as guidelines to evaluate and compare models of vector-borne infectious diseases.


Asunto(s)
Virus del Dengue/inmunología , Dengue/inmunología , Modelos Animales de Enfermedad , Huésped Inmunocomprometido , Orientia tsutsugamushi/inmunología , Tifus por Ácaros/inmunología , Animales , Dengue/patología , Dengue/virología , Virus del Dengue/patogenicidad , Humanos , Periodo de Incubación de Enfermedades Infecciosas , Inyecciones Intradérmicas , Inyecciones Intravenosas , Hígado/microbiología , Hígado/virología , Tejido Linfoide/microbiología , Tejido Linfoide/virología , Ratones , Ratones Noqueados , Orientia tsutsugamushi/patogenicidad , Tifus por Ácaros/microbiología , Tifus por Ácaros/patología , Bazo/microbiología , Bazo/virología
4.
Cell Host Microbe ; 27(5): 681-682, 2020 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-32407701

RESUMEN

In this issue of Cell Host & Microbe, Young et al. shed light on dengue virus 3-specific epitopes. Mapping of human monoclonal antibodies led to the discovery of six quaternary antigenic sites with strong neutralizing activity suggesting that epitopes involved with protective immunity may be more complex than previously realized.


Asunto(s)
Anticuerpos Neutralizantes , Virus del Dengue/inmunología , Anticuerpos Antivirales , Epítopos , Humanos , Serogrupo
5.
Vaccines (Basel) ; 8(2)2020 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-32260110

RESUMEN

Zika virus (ZIKV) is a mosquito-transmitted positive-sense RNA virus in the family Flaviviridae. Candidate live-attenuated vaccine (LAV) viruses with engineered deletions in the 3' untranslated region (UTR) provide immunity and protection in animal models of ZIKV infection, and phenotypic studies show that LAVs retain protective abilities following in vitro passage. The present study investigated the genetic diversity of wild-type (WT) parent ZIKV and its candidate LAVs using next generation sequencing analysis of five sequential in vitro passages. The results show that genomic entropy of WT ZIKV steadily increases during in vitro passage, whereas that of LAVs also increased by passage number five but was variable throughout passaging. Additionally, clusters of single nucleotide variants (SNVs) were found to be present in the pre-membrane/membrane (prM), envelope (E), nonstructural protein NS1 (NS1), and other nonstructural protein genes, depending on the specific deletion, whereas in the parent WT ZIKV, they are more abundant in prM and NS1. Ultimately, both the parental WT and LAV derivatives increase in genetic diversity, with evidence of adaptation following passage.

6.
NPJ Vaccines ; 4: 48, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31815005

RESUMEN

Live attenuated vaccines (LAVs) are one of the most important strategies to control flavivirus diseases. The flavivirus nonstructural (NS) 4B proteins are a critical component of both the virus replication complex and evasion of host innate immunity. Here we have used site-directed mutagenesis of residues in the highly conserved N-terminal and central hydrophobic regions of Zika virus (ZIKV) NS4B protein to identify candidate attenuating mutations. Three single-site mutants were generated, of which the NS4B-C100S mutant was more attenuated than the other two mutants (NS4B-C100A and NS4B-P36A) in two immunocompromised mouse models of fatal ZIKV disease. The ZIKV NS4B-C100S mutant triggered stronger type 1 interferons and interleukin-6 production, and higher ZIKV-specific CD4+ and CD8+ T-cell responses, but induced similar titers of neutralization antibodies compared with the parent wild-type ZIKV strain and a previously reported candidate ZIKV LAV with a 10-nucleotide deletion in 3'-UTR (ZIKV-3'UTR-Δ10). Vaccination with ZIKV NS4B-C100S protected mice from subsequent WT ZIKV challenge. Furthermore, either passive immunization with ZIKV NS4B-C100S immune sera or active immunization with ZIKV NS4B-C100S followed by the depletion of T cells affords full protection from lethal WT ZIKV challenge. In summary, our results suggest that the ZIKV NS4B-C100S mutant may serve as a candidate ZIKV LAV due to its attenuated phenotype and high immunogenicity.

7.
Vaccines (Basel) ; 7(3)2019 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-31434319

RESUMEN

Zika virus (ZIKV) is a mosquito-borne Flavivirus. Previous studies have shown that mosquito-transmitted flaviviruses, including yellow fever, Japanese encephalitis, and West Nile viruses, could be attenuated by serial passaging in human HeLa cells. Therefore, it was hypothesized that wild-type ZIKV would also be attenuated after HeLa cell passaging. A human isolate from the recent ZIKV epidemic was subjected to serial HeLa cell passaging, resulting in attenuated in vitro replication in both Vero and A549 cells. Additionally, infection of AG129 mice with 10 plaque forming units (pfu) of wild-type ZIKV led to viremia and mortality at 12 days, whereas infection with 103 pfu of HeLa-passage 6 (P6) ZIKV led to lower viremia, significant delay in mortality (median survival: 23 days), and increased cytokine and chemokine responses. Genomic sequencing of HeLa-passaged virus identified two amino acid substitutions as early as HeLa-P3: pre-membrane E87K and nonstructural protein 1 R103K. Furthermore, both substitutions were present in virus harvested from HeLa-P6-infected animal tissue. Together, these data show that, similarly to other mosquito-borne flaviviruses, ZIKV is attenuated following passaging in HeLa cells. This strategy can be used to improve understanding of substitutions that contribute to attenuation of ZIKV and be applied to vaccine development across multiple platforms.

8.
Emerg Microbes Infect ; 8(1): 1126-1138, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31355708

RESUMEN

Zika virus (ZIKV) strains belong to the East African, West African, and Asian/American phylogenetic lineages. RNA viruses, like ZIKV, exist as populations of genetically-related sequences whose heterogeneity may impact viral fitness, evolution, and virulence. Genetic diversity of representative ZIKVs from each lineage was examined using next generation sequencing (NGS) paired with downstream entropy and single nucleotide variant (SNV) analysis. Comparisons showed that inter-lineage diversity was statistically supported, while intra-lineage diversity. Intra-lineage diversity was significant for East but not West Africa strains. Furthermore, intra-lineage diversity for the Asian/American lineage was not supported for human serum isolates; however, a placenta isolate differed significantly. Relative in the pre-membrane/membrane (prM/M) gene of several ZIKV strains. Additionally, the East African lineage contained a greater number of synonymous SNVs, while a greater number of non-synonymous SNVs were identified for American strains. Further, inter-lineage SNVs were dispersed throughout the genome, whereas intra-lineage non-synonymous SNVs for Asian/American strains clustered within prM/M and NS1 gene. This comprehensive analysis of ZIKV genetic diversity provides a repository of SNV positions across lineages. We posit that increased non-synonymous SNV populations and increased relative genetic diversity of the prM/M and NS1 proteins provides more evidence for their role in ZIKV virulence and fitness.


Asunto(s)
Variación Genética , Filogeografía , Virus Zika/clasificación , Virus Zika/genética , Adaptación Biológica , Animales , Aptitud Genética , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Polimorfismo de Nucleótido Simple , Virus Zika/aislamiento & purificación
9.
Curr Opin Virol ; 29: 72-78, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29642053

RESUMEN

Severe Fever with Thrombocytopenia Syndrome (SFTS) is a new emerging tick-borne disease caused by the phlebovirus, SFTS virus (SFTSV). The virus was discovered in central China in 2009 and has since been identified in both Japan and South Korea. Significant progress has been made on the molecular biology of the virus, and this has been used to develop diagnostic assays and reagents. Less progress has been made on the epidemiology, maintenance and transmission, clinical manifestations, immunological responses, and treatment regimens. A number of animal models have been investigated but, to date, none recapitulate all the clinical manifestations seen in humans. Vaccine development is at an early discovery phase.


Asunto(s)
Interacciones Huésped-Patógeno/inmunología , Fiebre por Flebótomos/prevención & control , Phlebovirus/inmunología , Vacunas Virales/inmunología , Animales , Modelos Animales de Enfermedad , Humanos , Inmunidad , Modelos Moleculares , Fiebre por Flebótomos/diagnóstico , Fiebre por Flebótomos/epidemiología , Fiebre por Flebótomos/virología , Phlebovirus/clasificación , Phlebovirus/genética , Filogenia , Conformación Proteica , ARN Viral , Proteínas Virales/química , Proteínas Virales/genética
10.
Antiviral Res ; 154: 104-109, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29665374

RESUMEN

Dengue is a mosquito-borne disease of global public health importance caused by four genetically and serologically related viruses (DENV-1 to DENV-4). Efforts to develop effective vaccines and therapeutics for dengue have been slowed by the paucity of preclinical models that mimic human disease. DENV-2 models in interferon receptor deficient AG129 mice were an important advance but only allowed testing against a single DENV serotype. We have developed complementary AG129 mouse models of severe disseminated dengue infection using strains of the other three DENV serotypes. Here we used the adenosine nucleoside inhibitor NITD-008 to show that these models provide the ability to perform comparative preclinical efficacy testing of candidate antivirals in vivo against the full-spectrum of DENV serotypes. Although NITD-008 was effective in modulating disease caused by all DENV serotypes, the variability in protection among DENV serotypes was greater than expected from differences in activity in in vitro testing studies emphasizing the need to undertake spectrum of activity testing to help in prioritization of candidate compounds for further development.


Asunto(s)
Antivirales/uso terapéutico , Virus del Dengue/efectos de los fármacos , Modelos Animales de Enfermedad , Inhibidores de la Síntesis del Ácido Nucleico/uso terapéutico , Dengue Grave/tratamiento farmacológico , Adenosina/química , Animales , Evaluación Preclínica de Medicamentos , Ratones , Inhibidores de la Síntesis del Ácido Nucleico/farmacología , Prueba de Estudio Conceptual , Serogrupo
11.
Sci Rep ; 8(1): 4900, 2018 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-29559699

RESUMEN

The mosquito-borne disease dengue is caused by four serologically- and genetically-related viruses, termed DENV-1 to DENV-4. Historical setbacks due to lack of human-like mouse models of dengue were partially remedied with characterization of lethal DENV-2 infection in immunocompromised AG129 mice (deficient in IFN-α/ß/γ receptors). Recently, our group established lethal AG129 mouse infection models of DENV-1, DENV-3, and DENV-4 using human isolates. Here we compare a non-lethal, disseminated model of DENV-3 infection using strain D83-144 to that of the lethal outcome following infection by strain C0360/94. Both strains belong to DENV-3 genotype II and differ by only 13 amino acids. Intraperitoneal inoculation of AG129 mice with strain D83-144 led to clinical signs of dengue infection, such as cytokine induction, thrombocytopenia, and systemic infection. However, C0360/94 infection led to features of severe human dengue, including coagulopathy and lethal outcome, whereas D83-144 infection does not. This study is the first to investigate a low passage, non-mouse lethal strain in AG129 mice and demonstrates that D83-144 infection induces milder features of human dengue than those induced by lethal C0360/94 infection. The results suggest that the AG129 mouse model has applications to investigate factors associated with mild or severe disease.


Asunto(s)
Virus del Dengue/fisiología , Dengue/fisiopatología , Modelos Animales de Enfermedad , Genotipo , ARN Viral/genética , Animales , Citocinas/metabolismo , Dengue/virología , Coagulación Intravascular Diseminada , Femenino , Humanos , Huésped Inmunocomprometido , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Transgénicos , Receptores de Interferón/deficiencia , Serogrupo , Trombocitopenia
12.
J Gen Virol ; 98(10): 2507-2519, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28949904

RESUMEN

The mosquito-borne disease dengue is caused by four serologically and genetically related flaviviruses termed DENV-1 to DENV-4. Dengue is a global public health concern, with both the geographical range and burden of disease increasing rapidly. Clinically, dengue ranges from a relatively mild self-limiting illness to a severe life-threatening and sometimes fatal disease. Infection with one DENV serotype produces life-long homotypic immunity, but incomplete and short-term heterotypic protection. The development of small-animal models that recapitulate the characteristics of the disseminated disease seen clinically has been difficult, slowing the development of vaccines and therapeutics. The AG129 mouse (deficient in interferon alpha/beta and gamma receptor signalling) has proven to be valuable for this purpose, with the development of models of disseminated DENV-2,-3 and -4 disease. Recently, a DENV-1 AG129 model was described, but it requires antibody-dependent enhancement (ADE) to produce lethality. Here we describe a new AG129 model utilizing a non-mouse-adapted DENV-1 strain, West Pacific 74, that does not require ADE to induce lethal disease. Following high-titre intraperitoneal challenge, animals experience a virus infection with dissemination to multiple visceral tissues, including the liver, spleen and intestine. The animals also become thrombocytopenic, but vascular leakage is less prominent than in AG129 models with other DENV serotypes. Taken together, our studies demonstrate that this model is an important addition to dengue research, particularly for understanding the pathological basis of the disease between DENV serotypes and allowing the full spectrum of activity to test comparisons for putative vaccines and antivirals.


Asunto(s)
Virus del Dengue/crecimiento & desarrollo , Dengue/patología , Modelos Animales de Enfermedad , Aedes , Animales , Anticuerpos Antivirales/inmunología , Acrecentamiento Dependiente de Anticuerpo , Línea Celular , Chlorocebus aethiops , Citocinas/biosíntesis , Dengue/virología , Virus del Dengue/clasificación , Recuento de Eritrocitos , Intestinos/patología , Intestinos/virología , Hígado/patología , Hígado/virología , Ratones , Ratones Noqueados , Bazo/patología , Bazo/virología , Trombocitopenia/virología , Células Vero
13.
J Gen Virol ; 98(6): 1299-1304, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28631593

RESUMEN

The Dengue virus (DENV) envelope (E) protein is the major component of the viral surface and is structurally subdivided into three domains, ED1, ED2 and ED3. ED3 elicits potent neutralizing antibodies and contains two major antigenic sites: the DENV-type-specific and DENV-complex-reactive antigenic sites. Each site is composed of a limited subset of residues that are required for monoclonal antibody (mAb) binding. Here we show that DENV-2-type-specific mAb 9A3D-8 utilizes the functionally critical residues K307, V308, K310, I312, P332, L387, L389 and N390 for ED3 binding. Surprisingly, this DENV-type-specific epitope is predicted to overlap with the ED3 DENV-complex-reactive antigenic site on the viral surface. Further, this unique binding site enables mAb 9A3D-8 to neutralize virus infectivity at relatively low occupancy of virions compared to other ED3 mAbs identified to date. Together, the data in this study indicate that this is a new DENV-2-type-specific antigenic site on ED3.


Asunto(s)
Anticuerpos Monoclonales/metabolismo , Anticuerpos Antivirales/metabolismo , Epítopos de Linfocito B/metabolismo , Proteínas del Envoltorio Viral/inmunología , Proteínas del Envoltorio Viral/metabolismo , Animales , Anticuerpos Neutralizantes/metabolismo , Chlorocebus aethiops , Unión Proteica , Dominios Proteicos , Células Vero
14.
Vaccine ; 33(50): 7051-60, 2015 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-26478201

RESUMEN

Dengue is a mosquito-borne disease caused by four serologically and genetically related viruses termed DENV-1 to DENV-4. With an annual global burden of approximately 390 million infections occurring in the tropics and subtropics worldwide, an effective vaccine to combat dengue is urgently needed. Historically, a major impediment to dengue research has been development of a suitable small animal infection model that mimics the features of human illness in the absence of neurologic disease that was the hallmark of earlier mouse models. Recent advances in immunocompromised murine infection models have resulted in development of lethal DENV-2, DENV-3 and DENV-4 models in AG129 mice that are deficient in both the interferon-α/ß receptor (IFN-α/ß R) and the interferon-γ receptor (IFN-γR). These models mimic many hallmark features of dengue disease in humans, such as viremia, thrombocytopenia, vascular leakage, and cytokine storm. Importantly AG129 mice develop lethal, acute, disseminated infection with systemic viral loads, which is characteristic of typical dengue illness. Infected AG129 mice generate an antibody response to DENV, and antibody-dependent enhancement (ADE) models have been established by both passive and maternal transfer of DENV-immune sera. Several steps have been taken to refine DENV mouse models. Viruses generated by peripheral in vivo passages incur substitutions that provide a virulent phenotype using smaller inocula. Because IFN signaling has a major role in immunity to DENV, mice that generate a cellular immune response are desired, but striking the balance between susceptibility to DENV and intact immunity is complicated. Great strides have been made using single-deficient IFN-α/ßR mice for DENV-2 infection, and conditional knockdowns may offer additional approaches to provide a panoramic view that includes viral virulence and host immunity. Ultimately, the DENV AG129 mouse models result in reproducible lethality and offer multiple disease parameters to evaluate protection by candidate vaccines.


Asunto(s)
Vacunas contra el Dengue/inmunología , Vacunas contra el Dengue/aislamiento & purificación , Dengue/patología , Dengue/prevención & control , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos/métodos , Animales , Dengue/inmunología , Ratones Noqueados , Análisis de Supervivencia
15.
mBio ; 6(5): e01316-15, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-26374123

RESUMEN

UNLABELLED: With over 3.5 billion people at risk and approximately 390 million human infections per year, dengue virus (DENV) disease strains health care resources worldwide. Previously, we and others established models for DENV pathogenesis in mice that completely lack subunits of the receptors (Ifnar and Ifngr) for type I and type II interferon (IFN) signaling; however, the utility of these models is limited by the pleotropic effect of these cytokines on innate and adaptive immune system development and function. Here, we demonstrate that the specific deletion of Ifnar expression on subsets of murine myeloid cells (LysM Cre(+) Ifnar(flox/flox) [denoted as Ifnar(f/f) herein]) resulted in enhanced DENV replication in vivo. The administration of subneutralizing amounts of cross-reactive anti-DENV monoclonal antibodies to LysM Cre(+) Ifnar(f/f) mice prior to infection with DENV serotype 2 or 3 resulted in antibody-dependent enhancement (ADE) of infection with many of the characteristics associated with severe DENV disease in humans, including plasma leakage, hypercytokinemia, liver injury, hemoconcentration, and thrombocytopenia. Notably, the pathogenesis of severe DENV-2 or DENV-3 infection in LysM Cre(+) Ifnar(f/f) mice was blocked by pre- or postexposure administration of a bispecific dual-affinity retargeting molecule (DART) or an optimized RIG-I receptor agonist that stimulates innate immune responses. Our findings establish a more immunocompetent animal model of ADE of infection with multiple DENV serotypes in which disease is inhibited by treatment with broad-spectrum antibody derivatives or innate immune stimulatory agents. IMPORTANCE: Although dengue virus (DENV) infects hundreds of millions of people annually and results in morbidity and mortality on a global scale, there are no approved antiviral treatments or vaccines. Part of the difficulty in evaluating therapeutic candidates is the lack of small animal models that are permissive to DENV and recapitulate the clinical features of severe human disease. Using animals lacking the type I interferon receptor only on myeloid cell subsets, we developed a more immunocompetent mouse model of severe DENV infection with characteristics of the human disease, including vascular leakage, hemoconcentration, thrombocytopenia, and liver injury. Using this model, we demonstrate that pathogenesis by two different DENV serotypes is inhibited by therapeutic administration of a genetically modified antibody or a RIG-I receptor agonist that stimulates innate immunity.


Asunto(s)
Anticuerpos Bloqueadores/sangre , Acrecentamiento Dependiente de Anticuerpo , Virus del Dengue/inmunología , Dengue/tratamiento farmacológico , Dengue/patología , Modelos Animales de Enfermedad , Factores Inmunológicos/aislamiento & purificación , Animales , Anticuerpos Monoclonales/sangre , Anticuerpos Antivirales/sangre , Dengue/inmunología , Dengue/virología , Evaluación Preclínica de Medicamentos/métodos , Factores Inmunológicos/uso terapéutico , Ratones
16.
J Gen Virol ; 96(10): 3035-3048, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26296350

RESUMEN

Dengue is a mosquito-borne disease caused by four related but distinct dengue viruses, DENV-1 to DENV-4. Dengue is endemic in most tropical countries, and over a third of the world's population is at risk of being infected. Although the global burden is high, no vaccine or antiviral is licensed to combat this disease. An obstacle complicating dengue research is the lack of animal challenge models that mimic human disease. Advances in immunocompromised murine infection models resulted in development of lethal DENV-2, DENV-3 and DENV-4 models in AG129 mice, which are deficient in both the IFN-α/ß receptor (IFN-α/ßR) and the IFN-γ receptor (IFN-γR). These models mimic features of dengue disease in humans. Here, we characterized lethal infection of AG129 mice by DENV-4 strain TVP-376 and found that AG129 mice developed clinical signs of illness and high viral loads in multiple tissues and succumbed 5 days after infection. Moreover, the splenic and hepatic histopathology of TVP-376-infected mice demonstrated the presence of cell activation and destruction of tissue architecture. Furthermore, infected mice had heightened levels of circulating cytokines. Comparison of the virulence phenotypes of DENV-4 strain TVP-376 and DENV-2 strain D2S10 revealed that TVP-376-induced mortality occurred in the absence of both IFN-α/ßR and IFN-γR signalling, but not with intact signalling from the IFN-γR, whereas D2S10 required the absence of IFN-α/ßR signalling only, indicating that it is more virulent than TVP-376. In conclusion, TVP-376 is lethal in AG129 mice, and this model provides a useful platform to investigate vaccine candidates and antivirals against DENV-4.


Asunto(s)
Dengue/patología , Dengue/virología , Modelos Animales de Enfermedad , Receptor de Interferón alfa y beta/deficiencia , Receptores de Interferón/deficiencia , Estructuras Animales/virología , Animales , Citocinas/sangre , Dengue/inmunología , Hígado/patología , Ratones de la Cepa 129 , Ratones Noqueados , Bazo/patología , Carga Viral , Receptor de Interferón gamma
17.
PLoS One ; 10(5): e0125476, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25938762

RESUMEN

Dengue is a mosquito-borne disease of global public health significance that is caused by four serologically and genetically related viruses (DENV-1 to DENV-4). Most human DENV infections are asymptomatic, but clinical cases can range in severity from a relatively mild self-limiting illness to a severe life-threatening disease. Infection with one serotype of DENV results in life-long homotypic immunity but only short term heterotypic protection. There are no licensed vaccines or antivirals for dengue due in part to difficulty in developing small animal models that mimic the systemic disease seen in humans. Consequently, an important advance was the description of models of DENV-2 infection in AG129 mice (deficient in interferon alpha/beta and gamma receptor signaling) that resemble human disease. However, the need for well characterized models of disease due to DENV-1, -3, and -4 still remains. Here we describe a new AG129 mouse model utilizing a non-mouse-adapted Thai human DENV-4 strain 703-4. Following intraperitoneal challenge, animals experience a rapidly progressive lethal infection without developing neurologic clinical signs of disease. High virus titers are seen in multiple visceral tissues including the liver, spleen and large intestine, and the infected animals develop vascular leakage and thrombocytopenia, hallmarks of human dengue. Taken together, our studies demonstrate that this model is an important addition to the field of dengue research particularly in understanding similarities and differences in the pathologic basis of the disease caused by different DENV serotypes and in determining comparative efficacy of putative vaccines and antivirals.


Asunto(s)
Virus del Dengue/fisiología , Dengue/virología , Animales , Anticuerpos Antivirales/inmunología , Recuento de Células , Quimiocinas/sangre , Chlorocebus aethiops , Dengue/sangre , Dengue/complicaciones , Virus del Dengue/inmunología , Modelos Animales de Enfermedad , Humanos , Intestinos/irrigación sanguínea , Intestinos/patología , Leucopenia/sangre , Leucopenia/etiología , Hígado/irrigación sanguínea , Hígado/patología , Ratones , Trombocitopenia/sangre , Trombocitopenia/etiología , Células Vero , Viremia/sangre , Viremia/virología
18.
J Gen Virol ; 96(Pt 2): 288-293, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25351518

RESUMEN

The dengue virus (DENV) envelope protein domain 3 (ED3) is the target of potent virus neutralizing antibodies. The DENV-2 ED3 contains adjacent type-specific and DENV complex-reactive antigenic sites that are composed of a small number of residues that were previously demonstrated to be critical for antibody binding. Site-directed mutagenesis of a DENV-2 16681 infectious clone was used to mutate critical residues in the DENV-2 type-specific (K305A and P384A) and DENV complex-reactive (K310A) antigenic sites. The K305A mutant virus multiplied like the parent virus in mosquito and mammalian cells, as did the P384A mutant virus, which required a compensatory mutation (G330D) for viability. However, the K310A mutant virus could not be recovered. The DENV-2 type-specific critical residue mutations K305A and P384A+G330D reduced the ability of DENV-2 type-specific, but not DENV complex-reactive, mAbs to neutralize virus infectivity and this was directly correlated with mAb binding affinity to the rED3 mutants.


Asunto(s)
Virus del Dengue/inmunología , Epítopos/inmunología , Proteínas del Envoltorio Viral/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Análisis Mutacional de ADN , Virus del Dengue/genética , Epítopos/genética , Viabilidad Microbiana , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Conformación Proteica , Proteínas del Envoltorio Viral/genética , Replicación Viral
19.
J Virol ; 89(2): 1254-66, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25392217

RESUMEN

UNLABELLED: The mosquito-borne disease dengue (DEN) is caused by four serologically and genetically related viruses, termed DENV-1 to DENV-4. Infection with one DENV usually leads to acute illness and results in lifelong homotypic immunity, but individuals remain susceptible to infection by the other three DENVs. The lack of a small-animal model that mimics systemic DEN disease without neurovirulence has been an obstacle, but DENV-2 models that resemble human disease have been recently developed in AG129 mice (deficient in interferon alpha/beta and interferon gamma receptor signaling). However, comparable DENV-1, -3, and -4 models have not been developed. We utilized a non-mouse-adapted DENV-3 Thai human isolate to develop a lethal infection model in AG129 mice. Intraperitoneal inoculation of six to eight-week-old animals with strain C0360/94 led to rapid, fatal disease. Lethal C0360/94 infection resulted in physical signs of illness, high viral loads in the spleen, liver, and large intestine, histological changes in the liver and spleen tissues, and increased serum cytokine levels. Importantly, the animals developed vascular leakage, thrombocytopenia, and leukopenia. Overall, we have developed a lethal DENV-3 murine infection model, with no evidence of neurotropic disease based on a non-mouse-adapted human isolate, which can be used to investigate DEN pathogenesis and to evaluate candidate vaccines and antivirals. This suggests that murine models utilizing non-mouse-adapted isolates can be obtained for all four DENVs. IMPORTANCE: Dengue (DEN) is a mosquito-borne disease caused by four DENV serotypes (DENV-1, -2, -3, and -4) that have no treatments or vaccines. Primary infection with one DENV usually leads to acute illness followed by lifelong homotypic immunity, but susceptibility to infection by the other three DENVs remains. Therefore, a vaccine needs to protect from all four DENVs simultaneously. To date a suitable animal model to mimic systemic human illness exists only for DENV-2 in immunocompromised mice using passaged viruses; however, models are still needed for the remaining serotypes. This study describes establishment of a lethal systemic DENV-3 infection model with a human isolate in immunocompromised mice and is the first report of lethal infection by a nonadapted clinical DENV isolate without evidence of neurological disease. Our DENV-3 model provides a relevant platform to test DEN vaccines and antivirals.


Asunto(s)
Virus del Dengue/crecimiento & desarrollo , Dengue/patología , Dengue/virología , Modelos Animales de Enfermedad , Estructuras Animales/patología , Estructuras Animales/virología , Animales , Dengue/inmunología , Virus del Dengue/inmunología , Ratones Noqueados , Receptores de Interferón/deficiencia , Análisis de Supervivencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA