Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
PLoS Comput Biol ; 20(6): e1012208, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38900844

RESUMEN

The apicomplexan intracellular parasite Toxoplasma gondii is a major food borne pathogen that is highly prevalent in the global population. The majority of the T. gondii proteome remains uncharacterized and the organization of proteins into complexes is unclear. To overcome this knowledge gap, we used a biochemical fractionation strategy to predict interactions by correlation profiling. To overcome the deficit of high-quality training data in non-model organisms, we complemented a supervised machine learning strategy, with an unsupervised approach, based on similarity network fusion. The resulting combined high confidence network, ToxoNet, comprises 2,063 interactions connecting 652 proteins. Clustering identifies 93 protein complexes. We identified clusters enriched in mitochondrial machinery that include previously uncharacterized proteins that likely represent novel adaptations to oxidative phosphorylation. Furthermore, complexes enriched in proteins localized to secretory organelles and the inner membrane complex, predict additional novel components representing novel targets for detailed functional characterization. We present ToxoNet as a publicly available resource with the expectation that it will help drive future hypotheses within the research community.


Asunto(s)
Mapas de Interacción de Proteínas , Proteínas Protozoarias , Toxoplasma , Toxoplasma/metabolismo , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/química , Mapas de Interacción de Proteínas/fisiología , Biología Computacional , Mapeo de Interacción de Proteínas/métodos , Proteoma/metabolismo , Bases de Datos de Proteínas , Aprendizaje Automático , Análisis por Conglomerados
2.
bioRxiv ; 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38903060

RESUMEN

Diarrheal diseases are the second leading cause of death in children worldwide. Epidemiological studies show that co-infection with Giardia intestinalis decreases the severity of diarrhea. Here, we show that Giardia is highly prevalent in the stools of asymptomatic school-aged children. It orchestrates a Th2 mucosal immune response, characterized by increased antigen-specific Th2 cells, IL-25, Type 2-associated cytokines, and goblet cell hyperplasia. Giardia infection expanded IL-10-producing Th2 and GATA3+ Treg cells that promoted chronic carriage, parasite transmission, and conferred protection against Toxoplasma gondii-induced lethal ileitis and DSS-driven colitis by downregulating proinflammatory cytokines, decreasing Th1/Th17 cell frequency, and preventing collateral tissue damage. Protection was dependent on STAT6 signaling, as Giardia-infected STAT6-/- mice no longer regulated intestinal bystander inflammation. Our findings demonstrate that Giardia infection reshapes mucosal immunity toward a Type 2 response, which confers a mutualistic protection against inflammatory disease processes and identifies a critical role for protists in regulating mucosal defenses.

3.
Front Immunol ; 13: 963723, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36211380

RESUMEN

The physical barrier of the intestine and associated mucosal immunity maintains a delicate homeostatic balance between the host and the external environment by regulating immune responses to commensals, as well as functioning as the first line of defense against pathogenic microorganisms. Understanding the orchestration and characteristics of the intestinal mucosal immune response during commensal or pathological conditions may provide novel insights into the mechanisms underlying microbe-induced immunological tolerance, protection, and/or pathogenesis. Over the last decade, our knowledge about the interface between the host intestinal mucosa and the gut microbiome has been dominated by studies focused on bacterial communities, helminth parasites, and intestinal viruses. In contrast, specifically how commensal and pathogenic protozoa regulate intestinal immunity is less well studied. In this review, we provide an overview of mucosal immune responses induced by intestinal protozoa, with a major focus on the role of different cell types and immune mediators triggered by commensal (Blastocystis spp. and Tritrichomonas spp.) and pathogenic (Toxoplasma gondii, Giardia intestinalis, Cryptosporidium parvum) protozoa. We will discuss how these various protozoa modulate innate and adaptive immune responses induced in experimental models of infection that benefit or harm the host.


Asunto(s)
Criptosporidiosis , Cryptosporidium , Criptosporidiosis/metabolismo , Humanos , Inmunidad Mucosa , Mucosa Intestinal , Intestinos
4.
Mucosal Immunol ; 14(1): 253-266, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32862202

RESUMEN

Mycobacterium tuberculosis (Mtb) infection induces pulmonary expression of the heme-degrading enzyme heme oxygenase-1 (HO-1). We have previously shown that pharmacological inhibition of HO-1 activity in experimental tuberculosis results in decreased bacterial loads and unexpectedly that this outcome depends on the presence of T lymphocytes. Here, we extend these findings by demonstrating that IFNγ production by T lymphocytes and NOS2 expression underlie this T-cell requirement and that HO-1 inhibition potentiates IFNγ-induced NOS2-dependent control of Mtb by macrophages in vitro. Among the products of heme degradation by HO-1 (biliverdin, carbon monoxide, and iron), only iron supplementation reverted the HO-1 inhibition-induced enhancement of bacterial control and this reversal was associated with decreased NOS2 expression and NO production. In addition, we found that HO-1 inhibition results in decreased labile iron levels in Mtb-infected macrophages in vitro and diminished iron accumulation in Mtb-infected lungs in vivo. Together these results suggest that the T-lymphocyte dependence of the therapeutic outcome of HO-1 inhibition on Mtb infection reflects the role of the enzyme in generating iron that suppresses T-cell-mediated IFNγ/NOS2-dependent bacterial control. In broader terms, our findings highlight the importance of the crosstalk between iron metabolism and adaptive immunity in determining the outcome of infection.


Asunto(s)
Hemo-Oxigenasa 1/antagonistas & inhibidores , Interacciones Huésped-Patógeno , Interferón gamma/metabolismo , Mycobacterium tuberculosis , Óxido Nítrico Sintasa de Tipo II/metabolismo , Tuberculosis/metabolismo , Tuberculosis/microbiología , Animales , Carga Bacteriana , Interacciones Huésped-Patógeno/inmunología , Hierro/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Modelos Biológicos , Mycobacterium tuberculosis/inmunología , Óxido Nítrico/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo , Tuberculosis/inmunología
5.
Int J Mol Sci ; 20(20)2019 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-31658592

RESUMEN

The microneme organelles of Toxoplasma gondii tachyzoites release protein complexes (MICs), including one composed of the transmembrane protein MIC6 plus MIC1 and MIC4. In this complex, carbohydrate recognition domains of MIC1 and MIC4 are exposed and interact with terminal sialic acid and galactose residues, respectively, of host cell glycans. Recently, we demonstrated that MIC1 and MIC4 binding to the N-glycans of Toll-like receptor (TLR) 2 and TLR4 on phagocytes triggers cell activation and pro-inflammatory cytokine production. Herein, we investigated the requirement for TLR2 heterodimerization and co-receptors in MIC-induced responses, as well as the signaling molecules involved. We used MICs to stimulate macrophages and HEK293T cells transfected with TLR2 and TLR1 or TLR6, both with or without the co-receptors CD14 and CD36. Then, the cell responses were analyzed, including nuclear factor-kappa B (NF-κB) activation and cytokine production, which showed that (1) only TLR2, among the studied factors, is crucial for MIC-induced cell activation; (2) TLR2 heterodimerization augments, but is not critical for, activation; (3) CD14 and CD36 enhance the response to MIC stimulus; and (4) MICs activate cells through a transforming growth factor beta-activated kinase 1 (TAK1)-, mammalian p38 mitogen-activated protein kinase (p38)-, and NF-κB-dependent pathway. Remarkably, among the studied factors, the interaction of MIC1 and MIC4 with TLR2 N-glycans is sufficient to induce cell activation, which promotes host protection against T. gondii infection.


Asunto(s)
Moléculas de Adhesión Celular/química , Moléculas de Adhesión Celular/metabolismo , Dimerización , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo , Receptor Toll-Like 2/química , Receptor Toll-Like 2/metabolismo , Toxoplasma/metabolismo , Animales , Antígenos CD36/genética , Antígenos CD36/metabolismo , Citocinas/análisis , Femenino , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Receptores de Lipopolisacáridos/genética , Receptores de Lipopolisacáridos/metabolismo , Quinasas Quinasa Quinasa PAM/metabolismo , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Células RAW 264.7 , Transducción de Señal , Receptor Toll-Like 1/metabolismo , Receptor Toll-Like 6/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
6.
PLoS Pathog ; 15(6): e1007871, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31226171

RESUMEN

Infection of host cells by Toxoplasma gondii is an active process, which is regulated by secretion of microneme (MICs) and rhoptry proteins (ROPs and RONs) from specialized organelles in the apical pole of the parasite. MIC1, MIC4 and MIC6 assemble into an adhesin complex secreted on the parasite surface that functions to promote infection competency. MIC1 and MIC4 are known to bind terminal sialic acid residues and galactose residues, respectively and to induce IL-12 production from splenocytes. Here we show that rMIC1- and rMIC4-stimulated dendritic cells and macrophages produce proinflammatory cytokines, and they do so by engaging TLR2 and TLR4. This process depends on sugar recognition, since point mutations in the carbohydrate-recognition domains (CRD) of rMIC1 and rMIC4 inhibit innate immune cells activation. HEK cells transfected with TLR2 glycomutants were selectively unresponsive to MICs. Following in vitro infection, parasites lacking MIC1 or MIC4, as well as expressing MIC proteins with point mutations in their CRD, failed to induce wild-type (WT) levels of IL-12 secretion by innate immune cells. However, only MIC1 was shown to impact systemic levels of IL-12 and IFN-γ in vivo. Together, our data show that MIC1 and MIC4 interact physically with TLR2 and TLR4 N-glycans to trigger IL-12 responses, and MIC1 is playing a significant role in vivo by altering T. gondii infection competency and murine pathogenesis.


Asunto(s)
Moléculas de Adhesión Celular/inmunología , Células Dendríticas/inmunología , Inmunidad Innata , Macrófagos/inmunología , Proteínas Protozoarias/inmunología , Ácidos Siálicos/inmunología , Receptor Toll-Like 2/inmunología , Receptor Toll-Like 4/inmunología , Toxoplasma/inmunología , Toxoplasmosis Animal/inmunología , Animales , Interleucina-12/inmunología , Ratones , Ratones Noqueados , Receptor Toll-Like 2/genética , Receptor Toll-Like 4/genética , Toxoplasmosis Animal/genética
7.
Sci Rep ; 7(1): 7083, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28765651

RESUMEN

Agonist interaction with Toll-like receptors (TLRs) induces T cell-mediated immunity, which is effective against intracellular pathogens. Consequently, TLR agonists are being tried as immunomodulatory agents. The lectin ArtinM targets TLR2 N-glycans on macrophages, induces cytokines production, and promotes T helper-1 immunity, a process that culminates in resistance to several parasitic and fungal infections in vivo. Because co-receptors influence agonist binding to TLRs, we investigated whether CD14 is required for macrophage activation induced by ArtinM. Macrophages from wild-type mice stimulated by ArtinM not only produced cytokines but also had the following activation profile: (i) expression of M1 polarization markers; (ii) nitrite oxide production; (iii) cellular migration; (iv) enhanced phagocytic and fungicide activity; (v) modulation of TLR2 expression; and (vi) activation of NF-κB pathway. This activation profile induced by ArtinM was evaluated in macrophages lacking CD14 that showed none of the ArtinM effects. We demonstrated by immunoprecipitation and sugar inhibition assays the physical interaction of ArtinM, TLR2, and CD14, which depends on recognition of the trimannoside that constitutes the core of N-glycans. Thus, our study showed that CD14 is critical for ArtinM-induced macrophage activation, providing fundamental insight into the design of anti-infective therapies based on carbohydrate recognition.


Asunto(s)
Antígenos CD/genética , Antígenos CD/metabolismo , Activación de Macrófagos/fisiología , Receptor Toll-Like 2/metabolismo , Animales , Citocinas/metabolismo , Lectinas de Unión a Manosa/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , FN-kappa B/metabolismo , Polisacáridos/metabolismo
8.
PLoS One ; 11(2): e0149721, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26901413

RESUMEN

ArtinM is a D-mannose-binding lectin extracted from the seeds of Artocarpus heterophyllus that interacts with TLR2 N-glycans and activates antigen-presenting cells (APCs), as manifested by IL-12 production. In vivo ArtinM administration induces Th1 immunity and confers protection against infection with several intracellular pathogens. In the murine model of Candida albicans infection, it was verified that, in addition to Th1, ArtinM induces Th17 immunity manifested by high IL-17 levels in the treated animals. Herein, we investigated the mechanisms accounting for the ArtinM-induced IL-17 production. We found that ArtinM stimulates the IL-17 production by spleen cells in BALB/c or C57BL/6 mice, a response that was significantly reduced in the absence of IL-23, MyD88, or IL-1R. Furthermore, we showed that ArtinM directly induced the IL-23 mRNA expression and the IL-1 production by macrophages. Consistently, in cell suspensions depleted of macrophages, the IL-17 production stimulated by ArtinM was reduced by 53% and the exogenous IL-23 acted synergistically with ArtinM in promoting IL-17 production by spleen cell suspensions. We verified that the absence of IL-23, IL-1R, or MyD88 inhibited, but did not block, the IL-17 production by ArtinM-stimulated spleen cells. Therefore, we investigated whether ArtinM exerts a direct effect on CD4+ T cells in promoting IL-17 production. Indeed, spleen cell suspensions depleted of CD4+ T cells responded to ArtinM with very low levels of IL-17 release. Likewise, isolated CD4+ T cells under ArtinM stimulus augmented the expression of TGF-ß mRNA and released high levels of IL-17. Considering the observed synergism between IL-23 and ArtinM, we used cells from IL-23 KO mice to assess the direct effect of lectin on CD4+ T cells. We verified that ArtinM increased the IL-17 production significantly, a response that was inhibited when the CD4+ T cells were pre-incubated with anti-CD3 antibody. In conclusion, ArtinM stimulates the production of IL-17 by CD4+ T cells in two major ways: (I) through the induction of IL-23 and IL-1 by APCs and (II) through the direct interaction with CD3 on the CD4+ T cells. This study contributes to elucidation of mechanisms accounting for the property of ArtinM in inducing Th17 immunity and opens new perspectives in designing strategies for modulating immunity by using carbohydrate recognition agents.


Asunto(s)
Artocarpus/química , Complejo CD3/inmunología , Interleucina-17/inmunología , Interleucina-1/inmunología , Interleucina-23/inmunología , Lectina de Unión a Manosa , Lectinas de Plantas , Células Th17/inmunología , Animales , Complejo CD3/genética , Candida albicans/inmunología , Candidiasis/tratamiento farmacológico , Candidiasis/genética , Candidiasis/inmunología , Interleucina-1/genética , Interleucina-17/genética , Interleucina-23/genética , Lectina de Unión a Manosa/química , Lectina de Unión a Manosa/farmacología , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/inmunología , Lectinas de Plantas/química , Lectinas de Plantas/farmacología , Receptores de Interleucina-1/genética , Receptores de Interleucina-1/inmunología , Células TH1/inmunología
9.
PLoS One ; 10(12): e0144507, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26659253

RESUMEN

Toxoplasma gondii is an obligate intracellular protozoan parasite found worldwide that is able to chronically infect almost all vertebrate species, especially birds and mammalians. Chitinases are essential to various biological processes, and some pathogens rely on chitinases for successful parasitization. Here, we purified and characterized a chitinase from T. gondii. The enzyme, provisionally named Tg_chitinase, has a molecular mass of 13.7 kDa and exhibits a Km of 0.34 mM and a Vmax of 2.64. The optimal environmental conditions for enzymatic function were at pH 4.0 and 50 °C. Tg_chitinase was immunolocalized in the cytoplasm of highly virulent T. gondii RH strain tachyzoites, mainly at the apical extremity. Tg_chitinase induced macrophage activation as manifested by the production of high levels of pro-inflammatory cytokines, a pathogenic hallmark of T. gondii infection. In conclusion, to our knowledge, we describe for the first time a chitinase of T. gondii tachyzoites and provide evidence that this enzyme might influence the pathogenesis of T. gondii infection.


Asunto(s)
Quitinasas/inmunología , Activación de Macrófagos/inmunología , Macrófagos Peritoneales/inmunología , Proteínas Protozoarias/inmunología , Toxoplasma/inmunología , Secuencia de Aminoácidos , Animales , Quitinasas/genética , Quitinasas/metabolismo , Cromatografía Liquida , Citocinas/inmunología , Citocinas/metabolismo , Citoplasma/enzimología , Interacciones Huésped-Parásitos/inmunología , Concentración de Iones de Hidrógeno , Mediadores de Inflamación/inmunología , Mediadores de Inflamación/metabolismo , Cinética , Macrófagos Peritoneales/metabolismo , Macrófagos Peritoneales/parasitología , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Microscopía Confocal , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Proteínas Protozoarias/química , Espectrometría de Masas en Tándem , Temperatura , Toxoplasma/enzimología , Toxoplasma/fisiología
10.
PLoS One ; 10(11): e0143087, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26575028

RESUMEN

Toxoplasmosis, a zoonotic disease caused by Toxoplasma gondii, is an important public health problem and veterinary concern. Although there is no vaccine for human toxoplasmosis, many attempts have been made to develop one. Promising vaccine candidates utilize proteins, or their genes, from microneme organelle of T. gondii that are involved in the initial stages of host cell invasion by the parasite. In the present study, we used different recombinant microneme proteins (TgMIC1, TgMIC4, or TgMIC6) or combinations of these proteins (TgMIC1-4 and TgMIC1-4-6) to evaluate the immune response and protection against experimental toxoplasmosis in C57BL/6 mice. Vaccination with recombinant TgMIC1, TgMIC4, or TgMIC6 alone conferred partial protection, as demonstrated by reduced brain cyst burden and mortality rates after challenge. Immunization with TgMIC1-4 or TgMIC1-4-6 vaccines provided the most effective protection, since 70% and 80% of mice, respectively, survived to the acute phase of infection. In addition, these vaccinated mice, in comparison to non-vaccinated ones, showed reduced parasite burden by 59% and 68%, respectively. The protective effect was related to the cellular and humoral immune responses induced by vaccination and included the release of Th1 cytokines IFN-γ and IL-12, antigen-stimulated spleen cell proliferation, and production of antigen-specific serum antibodies. Our results demonstrate that microneme proteins are potential vaccines against T. gondii, since their inoculation prevents or decreases the deleterious effects of the infection.


Asunto(s)
Proteínas Protozoarias/inmunología , Vacunas Antiprotozoos/inmunología , Toxoplasma/inmunología , Toxoplasmosis/prevención & control , Vacunación , Animales , Encéfalo/parasitología , Células Cultivadas , Citocinas/sangre , Escherichia coli , Femenino , Inmunidad Celular , Inmunidad Humoral , Ratones Endogámicos C57BL , Proteínas Protozoarias/biosíntesis , Vacunas Antiprotozoos/biosíntesis , Toxoplasmosis/inmunología , Toxoplasmosis/parasitología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA