Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
J Food Sci Technol ; 61(6): 1157-1164, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38562599

RESUMEN

The study aimed to optimize ultrasonic (US: 40 kHz/200 W for 10, 20, 30, 40, and 50 min), and microwave (MW: 160 W for 45, 90, 125, 180, and 225 s) pretreatment conditions on protein extraction yield and degree of protein hydrolysis (DH) from almond de-oiled meal, an industrial by-product. First order model was used to describe the kinetics of almond protein hydrolysates obtained with Alcalase. The highest DH, 10.95% was recorded for the US-50 min and 8.87% for MW-45 s; while it was 5.76% for the untreated/control sample. At these optimized pretreatment conditions, a 1.16- and 1.18-fold increment in protein recovery was observed for the US and MW pretreatments, respectively in comparison to the conventional alkaline extraction. The molecular weight distribution recorded for pretreated samples disclosed a significant reduction in the band thickness in comparison with control. Both the pretreatments resulted in a significant increase (P < 0.05) in the antioxidant activity, and TCA solubility index when compared with the control. Results evinced that US and/or MW pretreatments before enzymatic hydrolysis can be a promising approach for the valorization of almond meal for its subsequent use as an ingredient for functional foods/nutraceuticals which otherwise fetches low value as an animal feed.

2.
Food Chem ; 448: 139084, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38569403

RESUMEN

Almond protein isolate (API) obtained from almond meal was processed using dynamic high-pressure microfluidisation (0, 40, 80, 120, and 160 MPa pressure; single pass). Microfluidisation caused significant reductions in the particle size and increased absolute zeta potential. SDS-PAGE analysis indicated reduction in band intensity and the complete disappearance of bands beyond 80 MPa. Structural analysis (by circular dichroism, UV-Vis, and intrinsic-fluorescence spectra) of the API revealed disaggregation (up to 80 MPa) and then re-aggregation beyond 80 MPa. Significant increments in protein digestibility (1.16-fold) and the protein digestibility corrected amino acid score (PDCAAS; 1.15-fold) were observed for the API (80 MPa) than control. Furthermore, significant improvements (P < 0.05) in the functional properties were observed, viz., the antioxidant activity, protein solubility, and emulsifying properties. Overall, the results revealed that moderate microfluidisation treatment (80 MPa) is an effective and sustainable technique for enhancing physico-chemical and functional attributes of API, thus potentially enabling its functional food/nutraceuticals application.


Asunto(s)
Manipulación de Alimentos , Tamaño de la Partícula , Proteínas de Plantas , Presión , Prunus dulcis , Solubilidad , Prunus dulcis/química , Proteínas de Plantas/química , Antioxidantes/química
3.
Int J Biol Macromol ; 254(Pt 3): 127234, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37797851

RESUMEN

In the current research, the pomegranate peel extract of varying concentrations (0.02, 0.04, 0.06, 0.08, and 0.1 g/mL) were incorporated into jackfruit seed starch (5 % w/w) based edible films and coatings for the evaluation their effects on the mechanical, physical, barrier and thermal properties. Furthermore, the effects of the optimized edible coating were investigated on the postharvest shelf life of white grapes at room storage (30 ± 5 °C, RH = 70 ± 5 %) conditions for up to 8 days. The obtained results showed a significant increment in thickness (p ≤ 0.05) with higher concentration (0.1 g/mL) of pomegranate peel extract (PPE), total phenolic content (959.33 ± 43.36 mg/100 g) and antioxidant activity (87.35 ± 1.64 %) of the prepared edible films but have negative impacts on the water vapor permeability (2.82 × 10-6 ± 6.48 × 10-7 g-1h-1pa-1) and oxygen permeability (1.62 × 10-14 ± 9.32 × 10-15 cm3·cm/cm2·s·cmHg), solubility (23.24 ± 3.21 %), and tensile strength (1.60 ± 0.43 MPa). The edible film enriched with 0.4 g/mL of PPE showed higher thermal stability in terms of glass transition temperature (98.2 ± 0.21 °C) and peak temperature (110.3 ± 0.35 °C). Additionally, the application of coating treatment significantly maintains the postharvest shelf life of white grapes throughout the storage period.


Asunto(s)
Artocarpus , Películas Comestibles , Granada (Fruta) , Vitis , Almidón , Semillas
4.
Bioresour Technol ; 362: 127775, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35964919

RESUMEN

This review explores reutilization opportunities of protein-rich bio-waste derived from the major tree nuts (almonds, walnuts, and cashew nuts) oil processing industries through biorefinery strategies. The mechanically pressed out oil cakes of these nuts have high protein (45-55%), carbohydrate (30-35%), and fiber that could be utilized to produce bioactive peptides, biofuels, and dietary fiber, respectively; all of which can fetch substantially greater value than its current utilization as a cattle feed. Specific attention has been given to the production, characterization, and application of nut-based de-oiled cake hydrolysates for therapeutic benefits including antioxidant, antihypertensive and neuroprotective properties. The often-neglected safety/toxicological evaluation of the hydrolysates/peptide sequences has also been described. Based on the available data, it is concluded that enzymatic hydrolysis is a preferred method than microbial fermentation for the value addition of de-oiled tree nut cakes. Further, critical insights on the existing literature as well as potential research ideas have also been proposed.


Asunto(s)
Anacardium , Juglans , Animales , Biocombustibles/análisis , Carbohidratos/química , Bovinos , Nueces/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA