Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 10(8): eadj2630, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38381813

RESUMEN

In semiconductors, exciton or charge carrier diffusivity is typically described as an inherent material property. Here, we show that the transport of excitons among CsPbBr3 perovskite nanocrystals (NCs) depends markedly on how recently those NCs were occupied by a previous exciton. Using transient photoluminescence microscopy, we observe a striking dependence of the apparent exciton diffusivity on excitation laser power that does not arise from nonlinear exciton-exciton interactions or thermal heating. We interpret our observations with a model in which excitons cause NCs to transition to a long-lived metastable configuration that markedly increases exciton transport. The exciton diffusivity observed here (>0.15 square centimeters per second) is considerably higher than that observed in other NC systems, revealing unusually strong excitonic coupling between NCs. The finding of a persistent enhancement in excitonic coupling may help explain other photophysical behaviors observed in CsPbBr3 NCs, such as superfluorescence, and inform the design of optoelectronic devices.

2.
Chem Rev ; 122(19): 15082-15176, 2022 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-35728004

RESUMEN

Nanostructured surfaces with designed optical functionalities, such as metasurfaces, allow efficient harvesting of light at the nanoscale, enhancing light-matter interactions for a wide variety of material combinations. Exploiting light-driven matter excitations in these artificial materials opens up a new dimension in the conversion and management of energy at the nanoscale. In this review, we outline the impact, opportunities, applications, and challenges of optical metasurfaces in converting the energy of incoming photons into frequency-shifted photons, phonons, and energetic charge carriers. A myriad of opportunities await for the utilization of the converted energy. Here we cover the most pertinent aspects from a fundamental nanoscopic viewpoint all the way to applications.


Asunto(s)
Nanoestructuras , Fonones
3.
J Phys Chem Lett ; 11(9): 3430-3435, 2020 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-32290660

RESUMEN

Colloidal semiconductor nanocrystals (NCs) are promising components in various optoelectronic and photocatalytic devices; however, the mechanism of energy transport in these materials remains to be further understood. Here, we investigate the distance dependence of the electronic interactions between CsPbBr3 nanocubes and CdSe nanoplateles using an alumina (AlOx) shell as a spacer. CsPbBr3@AlOx core@shell NCs are synthesized via colloidal atomic layer deposition (c-ALD), which allows us to fine-tune the oxide thickness and thus the distance d between the two NCs. This versatile material platform shows that the electronic interactions between the CsPbBr3 NCs and the CdSe nanoplatelets can be tuned from electron to energy transfer by increasing the shell thickness, whereas previous studies on the same system had been limited to the former. Considering the applicability of the c-ALD to different NCs, we suggest that metal oxide shell spacers synthesized by this approach can generally be used to study energy-transfer mechanisms at the nanoscale.

4.
J Phys Chem Lett ; 10(24): 7797-7803, 2019 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-31790595

RESUMEN

The use of all-inorganic perovskite nanocrystals (PeNCs) in photocatalytic systems has been limited because of their instability in polar solvents. Encapsulation of PeNCs in inorganic or polymeric matrices has been shown to be effective in overcoming such instability issues, yet studies on charge and energy extraction from these composite systems are still rare. Herein, we explore the capacity of CsPbBr3 PeNC/AlOx composite films to drive chemical reactions by coupling them to plasmonic AgNCs. AlOx is used both as a stabilizing layer and as a spacer to study distance-dependent excitation energy transfer, which reveals a migration of energy from the PeNCs toward the AgNCs. We then utilize this pooled energy for a plasmon-mediated methylene blue desorption where we demonstrate enhancement effects of spectral and spatial absorption on the reaction outcome due to the coupling to PeNCs.

5.
Nanoscale ; 11(41): 19543-19550, 2019 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-31576878

RESUMEN

A deeper understanding of the perovskite-metal chemistry is crucial to elucidate the instability problems at the device level that can be caused by such interactions. Here, we study the reactions occurring between CsPbX3 (X = Br, BrI, I) perovskite and metal (M = Ag, Cu, Au) nanocrystals. We demonstrate a fast (<1 hour) optical and structural degradation of the I-containing nanocrystals driven by the formation of metal iodides with reaction kinetics according to the following order Cu < Ag < Au. These results point to the need for thoughtful considerations while constructing optoelectronic devices out of all-inorganic CsPbX3 nanocrystals, where the use of contact metals is a necessity.

6.
J Am Chem Soc ; 141(20): 8254-8263, 2019 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-31045360

RESUMEN

The ability to tune thin oxide coatings by wet-chemistry is desirable for many applications, yet it remains a key synthetic challenge. In this work, we introduce a general colloidal atomic layer deposition (c-ALD) synthesis to grow an alumina shell with tunable thickness around nanocrystalline cores of various compositions spanning from ionic semiconductors (i.e., CsPbX3, with X = Br, I, Cl) to metal oxides and metals (i.e., CeO2 and Ag). The distinctive characteristics of each core (i.e., emission, facile surface functionalization, stability) allowed us to optimize and to elucidate the chemistry of the c-ALD process. Compared to gas-phase ALD, this newly developed synthesis has the advantage of preserving the colloidal stability of the nanocrystalline core while controlling the shell thickness from 1 to 6 nm. As one example of the opportunities offered by the growth of a thin oxide shell, we study the anion exchange reaction in the CsPbX3 perovskites nanocrystals by in situ X-ray diffraction, which had been impeded so far by the instability of this class of materials and by the fast exchange kinetics.

7.
Angew Chem Int Ed Engl ; 56(36): 10696-10701, 2017 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-28547826

RESUMEN

Herein, the assembly of CsPbBr3 QD/AlOx inorganic nanocomposites, by using atomic layer deposition (ALD) for the growth of the amorphous alumina matrix (AlOx ), is described as a novel protection scheme for such QDs. The nucleation and growth of AlOx on the QD surface was thoroughly investigated by miscellaneous techniques, which highlighted the importance of the interaction between the ALD precursors and the QD surface to uniformly coat the QDs while preserving the optoelectronic properties. These nanocomposites show exceptional stability towards exposure to air (for at least 45 days), irradiation under simulated solar spectrum conditions (for at least 8 h), and heat (up to 200 °C in air), and finally upon immersion in water. This method was extended to the assembly of CsPbBrx I3-x QD/AlOx and CsPbI3 QD/AlOx nanocomposites, which were more stable than the pristine QD films.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA