Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
1.
Chemosphere ; 361: 142503, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38825242

RESUMEN

There is considerable interest in addressing soils contaminated with per- and polyfluoroalkyl substances (PFAS) because of the PFAS in the environment and associated health risks. The neutralization of PFAS in situ is challenging. Consequently, mobilizing the PFAS from the contaminated soils into an aqueous solution for subsequent handling has been pursued. Nonetheless, the efficiency of mobilization methods for removing PFAS can vary depending on site-specific factors, including the types and concentrations of PFAS compounds, soil characteristics. In the present study, the removal of perfluorooctanoate (PFOA) and perfluorooctane sulfonate (PFOS) from artificially contaminated soils was investigated in a 2D laboratory setup using electrokinetic (EK) remediation and hydraulic flushing by applying a hydraulic gradient (HG) for a duration of 15 days. The percent removal of PFOA by EK was consistent (∼80%) after a 15-day treatment for all soils. The removal efficiency of PFOS by EK significantly varied with the OM content, where the PFOS removal increased from 14% at 5% OM to 60% at 50% OM. With HG, the percent removal increased for both PFOA and PFOS from about 20% at 5% OM up to 80% at 75% OM. Based on the results, the mobilization of PFAS from organic soil would be appropriate using both hydraulic flushing and EK considering their applicability and advantages over each other for site-specific factors and requirements.

2.
Chemosphere ; 358: 142196, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38692362

RESUMEN

Stormwater pollution is a key factor contributing to water quality degradation, posing substantial environmental and human health risks. Although stormwater retention ponds, also referred to as wet ponds, are commonly implemented to alleviate stormwater challenges by reducing peak flow and removing suspended solids, their effectiveness in removing heavy metals and nutrients is limited. This study evaluated the performance of floating treatment platforms (FTPs) featuring vetiver grass (Chrysopogon zizanioides), a non-invasive, nutrient- and metal-accumulating perennial grass, in removing heavy metals (Cu, Pb, and Zn) and nutrients (P and N) in stormwater retention ponds. Furthermore, the potential for utilizing the spent vetiver biomass for generating biochar and bioethanol was investigated. The study was conducted in a greenhouse setup under simulated wet and dry weather conditions using pond water collected from a retention pond in Stafford Township, New Jersey, USA. Two FTPs with vetiver (vegetated FTPs) were compared with two FTPs without vetiver (non-vegetated FTPs), which served as controls. Results showed that the removal of heavy metals and nutrients by the FTPs with vetiver was significantly higher (p < 0.05) than the FTPs without vetiver. Notably, vetiver showed resilience to stormwater pollutants and hydroponic conditions, displaying no visible stress symptoms. The biochar and bioethanol generated from the spent vetiver exhibited desirable yield and quality, without raising concerns regarding pollutant leaching, indicated by very low TCLP and SPLP concentrations. This study provides compelling evidence that the implementation of vetiver-based FTPs offers a cost-effective and environment-friendly solution for mitigating stormwater pollution in retention ponds. Furthermore, the utilization of vetiver biomass for biofuel and biochar production supports clean production and fostering circular economy efforts.


Asunto(s)
Biomasa , Carbón Orgánico , Etanol , Metales Pesados , Contaminantes Químicos del Agua , Carbón Orgánico/química , Metales Pesados/análisis , Etanol/química , Contaminantes Químicos del Agua/análisis , Chrysopogon , Poaceae , Eliminación de Residuos Líquidos/métodos , Purificación del Agua/métodos , Lluvia
3.
Elife ; 132024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38739431

RESUMEN

Survival of Mycobacterium tuberculosis within the host macrophages requires the bacterial virulence regulator PhoP, but the underlying reason remains unknown. 3',5'-Cyclic adenosine monophosphate (cAMP) is one of the most widely used second messengers, which impacts a wide range of cellular responses in microbial pathogens including M. tuberculosis. Herein, we hypothesized that intra-bacterial cAMP level could be controlled by PhoP since this major regulator plays a key role in bacterial responses against numerous stress conditions. A transcriptomic analysis reveals that PhoP functions as a repressor of cAMP-specific phosphodiesterase (PDE) Rv0805, which hydrolyzes cAMP. In keeping with these results, we find specific recruitment of the regulator within the promoter region of rv0805 PDE, and absence of phoP or ectopic expression of rv0805 independently accounts for elevated PDE synthesis, leading to the depletion of intra-bacterial cAMP level. Thus, genetic manipulation to inactivate PhoP-rv0805-cAMP pathway decreases cAMP level, stress tolerance, and intracellular survival of the bacillus.


Asunto(s)
Proteínas Bacterianas , AMP Cíclico , Regulación Bacteriana de la Expresión Génica , Mycobacterium tuberculosis , Estrés Fisiológico , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/fisiología , AMP Cíclico/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Viabilidad Microbiana , Macrófagos/microbiología , Macrófagos/metabolismo
4.
Environ Pollut ; 350: 124021, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38657890

RESUMEN

Soil microbial communities undergo constant fluctuations, particularly in response to environmental factors. Although the deposition of toxic mine waste is recognized for introducing potentially hazardous elements (PHEs) into the soil, its specific impacts on microbial communities remain unclear. This study aims to explore the combined effects of soil alkalinity and bioavailable PHEs on microbial diversity and traits in agricultural soil adjacent to a chromium-asbestos mining area. By employing a comprehensive analysis, this study indicated that microbiological attributes were reduced in contaminated areas (zone 1), whereas both the levels of bioavailable PHEs (CrWs: 31.08 mg/kg, NiWs: 13.90 mg/kg) and alkalinity indices (CROSS, MCAR, MH) were significantly higher. The spatial distribution of soil alkalinity and bioavailable PHEs, primarily originating from chromium-asbestos mines, has been determined. This study also elucidates the negative relationship between soil stressors (Alkalinity and PHEs) and microbial activities (soil enzymatic activity, microbial respiration, and biomass carbon). The vector's length exhibited a notable difference between zone 1 (0.51) and zone 2 (0.32), indicating a substantial limitation on carbon (C). Also, the investigation of soil bacterial diversity unveiled notable disparities in the prevalence of microbial populations inside zone 1. Proteobacteria constituted 57.18% of the total population indicating a noteworthy prevalence in the contaminated soils. Finally, the random forest (RF) algorithm from machine learning was selected and proven to be a robust choice in Taylor diagrams for predicting the causative stressors responsible for the deterioration of soil microbial health. Therefore, this research offers insights into the health and resilience of soil microbial communities under synergistic stress conditions, which will aid environmentalists in planning future interventions and improving sustainable farming techniques.


Asunto(s)
Cromo , Minería , Microbiología del Suelo , Contaminantes del Suelo , Suelo , Contaminantes del Suelo/análisis , Cromo/análisis , Suelo/química , Agricultura , Bacterias/efectos de los fármacos , Microbiota/efectos de los fármacos , Concentración de Iones de Hidrógeno
5.
PLoS Genet ; 19(12): e1011070, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38100394

RESUMEN

PhoP-PhoR, one of the 12 two-component systems (TCSs) that empower M. tuberculosis to sense and adapt to diverse environmental conditions, remains essential for virulence, and therefore, represents a major target to develop novel anti-TB therapies. Although both PhoP and PhoR have been structurally characterized, the signal(s) that this TCS responds to remains unknown. Here, we show that PhoR is a sensor of acidic pH/high salt conditions, which subsequently activate PhoP via phosphorylation. In keeping with this, transcriptomic data uncover that acidic pH- inducible expression of PhoP regulon is significantly inhibited in a PhoR-deleted M. tuberculosis. Strikingly, a set of PhoP regulon genes displayed a low pH-dependent activation even in the absence of PhoR, suggesting the presence of non-canonical mechanism(s) of PhoP activation. Using genome-wide interaction-based screening coupled with phosphorylation assays, we identify a non-canonical mechanism of PhoP phosphorylation by the sensor kinase PrrB. To investigate how level of P~PhoP is regulated, we discovered that in addition to its kinase activity PhoR functions as a phosphatase of P~PhoP. Our subsequent results identify the motif/residues responsible for kinase/phosphatase dual functioning of PhoR. Collectively, these results uncover that contrasting kinase and phosphatase functions of PhoR determine the homeostatic mechanism of regulation of intra-mycobacterial P~PhoP which controls the final output of the PhoP regulon. Together, these results connect PhoR to pH-dependent activation of PhoP with downstream functioning of the regulator. Thus, PhoR plays a central role in mycobacterial adaptation to low pH conditions within the host macrophage phagosome, and a PhoR-deleted M. tuberculosis remains significantly attenuated in macrophages and animal models.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Animales , Mycobacterium tuberculosis/genética , Virulencia/genética , Fosforilación , Tuberculosis/genética , Monoéster Fosfórico Hidrolasas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica
6.
Sci Rep ; 13(1): 21164, 2023 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-38036556

RESUMEN

The 'Green Revolution (GR)' has been successful in meeting food sufficiency in India, but compromising its nutritional security. In a first, we report altered grain nutrients profile of modern-bred rice and wheat cultivars diminishing their mineral dietary significance to the Indian population. To substantiate, we evaluated grain nutrients profile of historical landmark high-yielding cultivars of rice and wheat released in succeeding decades since the GR and its impacts on mineral diet quality and human health, with a prediction for decades ahead. Analysis of grain nutrients profile shows a downward trend in concentrations of essential and beneficial elements, but an upward in toxic elements in past 50 y in both rice and wheat. For example, zinc (Zn) and iron (Fe) concentration in grains of rice decreased by ~ 33.0 (P < 0.001) and 27.0% (P < 0.0001); while for wheat it decreased by ~ 30.0 (P < 0.0001) and 19.0% (P < 0.0001) in past more than 50 y, respectively. A proposed mineral-diet quality index (M-DQI) significantly (P < 0.0001) decreased ~ 57.0 and 36.0% in the reported time span (1960-2010) in rice and wheat, respectively. The impoverished M-DQI could impose hostile effects on non-communicable diseases (NCDs) like iron-deficiency anemia, respiratory, cardiovascular, and musculoskeletal among the Indian population by 2040. Our research calls for an urgency of grain nutrients profiling before releasing a cultivar of staples like rice and wheat in the future.


Asunto(s)
Oryza , Triticum , Humanos , Hierro/análisis , Fitomejoramiento , Minerales , Grano Comestible/química
7.
Environ Monit Assess ; 195(9): 1099, 2023 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-37632560

RESUMEN

Mitigating the atmospheric greenhouse effect while enhancing the inherent soil quality and productive capacity is possible through soil carbon (C) sequestration, which has a significant potential to counteract the adverse effects of agroecosystem level C emission through natural and anthropogenic means. Although rice is the most important food in India, feeding more than 60% of the country's population, it is commonly blamed for significant methane (CH4) emissions that accelerate climate change. Higher initial soil organic matter concentrations would create more CH4 under the flooded soil conditions, as reducible soil C is a prerequisite for CH4 generation. In India, rice is generally cultivated in lowlands under continuous flooding. Less extensive organic matter breakdown in lowland rice agroecosystems often significantly impacts the dynamics of soil active and passive C pools. Change from conventional to conservation agriculture might trap a significant quantity of SOC. The study aims to investigate the potential of rice-based soils to sequester C and reduce the accelerated greenhouse effects through modified farming practices, such as crop residue retention, crop rotation, organic farming, varietal selection, conservation agriculture, integrated nutrient management, and water management. Overall, lowland rice agroecosystems can sequester significant amounts of SOC, but this potential must be balanced against the potential for CH4 emissions. Management practices that reduce CH4 emissions while increasing soil C sequestration should be promoted and adopted to maximize the sustainability of rice agroecosystems. This review is important for understanding the effectiveness of the balance between SOC sequestration and CH4 emissions in lowland rice agroecosystems for adopting sustainable agricultural practices in the context of climate change.


Asunto(s)
Oryza , Suelo , Carbono , Secuestro de Carbono , Monitoreo del Ambiente , Metano
8.
Chemosphere ; 340: 139812, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37597630

RESUMEN

The use of arsenic (As) for various industrial and agricultural applications has led to worldwide environmental contamination. Phytoremediation using hyperaccumulators is a sustainable soil As mitigation strategy. Microbial processes play an important role in the tolerance and uptake of trace elements such as in plants. The rhizospheric and endophytic microbial communities are responsible for accelerating the mobility of trace elements around the roots and the production of plant growth-promoting compounds and enzymes. Several studies have reported that the As hyperaccumulator, Pteris vittata L. (PV) influences the microbial community in its rhizosphere and roots. Deciphering the differences in the microbiomes of hyperaccumulators and non-accumulators is crucial in understanding the mechanism of hyperaccumulation. We hypothesized that there are significant differences in the microbiome of roots, rhizospheric soil, and bulk soil between the hyperaccumulator PV and a non-accumulator of the same genus, Pteris ensiformis Burm. (PE), and that the differential recruitment of bacterial communities provides PV with an advantage in As contaminated soil. We compared root endophytic, rhizospheric, and bulk soil microbial communities between PV and PE species grown in As-contaminated soil in a greenhouse setting. There was a significant difference (p < 0.001) in the microbiome of the three compartments between the ferns. Differential abundance analysis showed 328 Amplicon Sequence Variants (ASVs) enriched in PV compared to 172 in PE. The bulk and rhizospheric soil of both ferns were abundant in As-resistant genera. However, As-tolerant root endophytic genera were present in PV but absent in PE. Our findings show that there is a difference between the bacterial composition of an As hyperaccumulator and a non-accumulator species grown in As-contaminated soil. These differences need to be further explored to develop strategies for improving the efficiency of metal uptake in plants growing in As polluted soil.


Asunto(s)
Arsénico , Helechos , Pteris , Oligoelementos , Agricultura , Suelo
9.
Sci Total Environ ; 904: 166685, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37652378

RESUMEN

Urban areas play a significant role in generating microplastics (MPs) through increased vehicular and human activities, making urban runoff a key source of MP pollution in receiving waterways. The composition of MPs is anticipated to vary with land use; hence, identifying the hotspots of contamination within urban areas is imperative for the targeted interventions to reduce MPs at their sources. This study collected one-liter stormwater runoffs from three different land uses as sheet flow during two storm events to quantify the MPs and identify the polymers transported from land-based sources. The analytical method included a combination of Fourier transform infrared spectrometer, Raman microscope, and Nile red staining techniques. This study analyzed the broad spectrum of MPs, i.e., 1 µm-5 mm, and tire wear and bitumen particles, considered the two major research gaps in stormwater studies. The MP concentrations were 67.7 ± 11.3 pL-1in commercial, 23 ± 10.3 pL-1 in residential, and 168.7 ± 37.1 pL-1in highways. The trend of MP concentrations followed an order of highway > commercial > residential with an exclusive presence of polymethylmethacrylate and ethylene-vinyl acetate in highways; cellophane, methylcellulose, polystyrene, polyamide, and polytetrafluorethylene in commercial; and high-density polyethylene in residential areas. The dominant MP morphology consisted of fragments, accounting for 89 % of the identified MPs, followed by 10 % fibers and 1 % films. This study observed a prevalence of MPs sizes <125 µm constituting 49 % of the total composition. These findings underscore the vital role of land use patterns in shaping MP abundance and reinforce the urgency of implementing effective management strategies to mitigate MP pollution in stormwater runoff.

10.
Sci Total Environ ; 880: 163228, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37019224

RESUMEN

Potentially toxic elements (PTEs) contamination in the agricultural soil can generate a detrimental effect on the ecosystem and poses a threat to human health. The present work evaluates the PTEs concentration, source identification, probabilistic assessment of health hazards, and dietary risk analysis due to PTEs pollution in the region of the chromite-asbestos mine, India. To evaluate the health risks associated with PTEs in soil, soil tailings and rice grains were collected and studied. The results revealed that the PTEs concentration (mainly Cr and Ni) of total, DTPA-bioavailable, and rice grain was significantly above the permissible limit in site 1 (tailings) and site 2 (contaminated) as compared with site 3 (uncontaminated). The Free ion activity model (FIAM) was applied to detect the solubility of PTEs in polluted soil and their probable transfer from soil to rice grain. The hazard quotient values were significantly higher than the safe (FIAM-HQ < 0.5) for Cr (1.50E+00), Ni (1.32E+00), and, Pb (5.55E+00) except for Cd (1.43E-03), Cu (5.82E-02). Severity adjustment margin of exposure (SAMOE) results denote that the PTEs contaminated raw rice grain has high health risk [CrSAMOE: 0.001; NiSAMOE: 0.002; CdSAMOE: 0.007; PbSAMOE: 0.008] for humans except for Cu. The Positive matrix factorization (PMF) along with correlation used to apportion the source. Self-organizing map (SOM) and PMF analysis identified the source of pollution mainly from mines in this region. Monte Carlo simulation (MCS) revealed that TCR (total carcinogenic risk) cannot be insignificant and children were the maximum sufferers relative to adults via ingestion-pathway. In the spatial distribution map, the region nearer to mine is highly prone to ecological risk with respect to PTEs pollution. Based on appropriate and reasonable evaluation methods, this work will help environmental scientists and policymakers' control PTEs pollution in agricultural soils near the vicinity of mines.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Niño , Adulto , Humanos , Metales Pesados/análisis , Cadmio/análisis , Monitoreo del Ambiente/métodos , Ecosistema , Plomo/análisis , Contaminantes del Suelo/análisis , Suelo , India , Medición de Riesgo , China
11.
Chemosphere ; 331: 138779, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37116722

RESUMEN

Phosphorus and metals in stormwater runoff are major causes of water quality degradation. Bioretention systems are increasingly implemented to improve stormwater quality and to better manage stormwater quantity. Many studies have focused on modifying the composition of the soil bed to improve pollutant removal. However, the pollutant removal performance of bioretention systems can diminish over time, such as when clogging of the media occurs. Sediment accumulation on the soil surface may inhibit infiltration into the soil bed, thus limiting pollutant removal. Soil replacement may be eventually required as pollutants accumulate in the soil. In this study, a green retrofit material, called green engineered mulch (GEM), was generated by coating regular wood mulch with aluminum-based water treatment residuals (WTR) via a simple and low-energy process (patent pending). The GEM was developed to serve as a green retrofit for bioretention systems to enhance the removal of phosphorus and metals from stormwater runoff. The GEM was placed in a rain garden in Secaucus, NJ, USA for 15 months, during which 12 storm events (ranging from 6.0 mm to 89.6 mm) were monitored. Runoff and infiltrate samples were analyzed for dissolved and total concentrations of phosphorus and metals, along with other key water quality parameters. The GEM significantly reduced (p < 0.05) the total concentrations of phosphorus and metals in stormwater infiltrate compared to the inlet, unlike the regular mulch. Minimal or no contact with the GEM resulted in no significant pollutant removal from surface runoff. No significant pollutant export from the GEM was observed. The spent GEM can be disposed of as non-hazardous waste in municipal landfills. This study demonstrates that the GEM is a safe and effective retrofit. Moreover, the GEM is a simple and economical retrofit solution that can be used in place of regular mulch in bioretention systems.


Asunto(s)
Contaminantes Ambientales , Fósforo , Metales , Calidad del Agua , Lluvia , Suelo
12.
Materials (Basel) ; 16(6)2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36984402

RESUMEN

Biochar has shown great promise in producing low-cost low-carbon concrete for civil infrastructure applications. However, there is limited research comparing the use of pristine and contaminated biochar in concrete. This paper presents comprehensive laboratory experiments and three-dimensional nonlinear finite element analysis on the mechanical, economical, and environmental performance of reinforced concrete beams made using concrete blended with biochar generated from vetiver grass roots after the roots were used in an oil extraction process. Both pristine biochar and biochar that were used to treat wastewater through adsorbing heavy metals (100 mg/L of Pb, Cu, Cd, and Zn) were investigated. The biochar was used to replace up to 6% Portland cement in concrete. Laboratory experiments were conducted to characterize the workability, mechanical properties, shrinkage, and leaching potential of the concrete blended with biochar. The results showed that using biochar could increase the compressive strengths and reduce the shrinkage of concrete without causing a leaching problem. The results from finite element analysis of the reinforced concrete beams showed that the use of biochar was able to increase the flexural performance of the beams as well as their economic and environmental performance. This research will promote the development and structural applications of low-cost low-carbon concrete.

13.
Environ Pollut ; 322: 121160, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36716947

RESUMEN

The need for the efficient remediation of soils impacted by per- and polyfluoroalkyl substances (PFAS) is substantially growing because of the notable upsurge in societal and regulatory awareness of this class of chemicals. To remediate PFAS-contaminated soils using mobilization approaches, the choice of appropriate techniques highly depends on the soil's composition, particularly the clay content, which significantly affects the soil's permeability. Here, we investigated the PFAS mobilization efficiency from soils with different clay contents by using two techniques: electrokinetic (EK) remediation and hydraulic flushing. Artificial kaolinite was added to a loamy sand soil to prepare four soil blends with clay contents of 5, 25, 50, and 75%, each contaminated with perfluorooctanoic acid (PFOA) and perfulorooctanesulfonic acid (PFOA) at 10,000 µg/kg. EK remediation was conducted by applying a low voltage (30 V) with a current of 100 mA, and hydraulic flushing was carried out by applying a hydraulic gradient (HG) with a slope of 6.7%. Results show that, with a 14-day treatment duration, the EK-mobilization efficiency was enhanced substantially with the increase of clay content (removal of PFOS increased from 20% at 5% clay to 80% at 75% clay), most likely due to the increase of electroosmotic flow due to the higher content of particles having a zeta potential (i.e., clay). For HG, increasing the clay content significantly suppressed the mobilization of PFAS (removal of PFOS decreased from 40% at 5% clay to 10% at 75% clay) due to a notable decrease in the soil's permeability. Based on the results, applying hydraulic flushing and washing techniques for mobilizing PFAS would be appropriate when treating permeable soils with a maximum clay content of about 25%; otherwise, other suitable mobilization techniques such as EKs should be considered.


Asunto(s)
Fluorocarburos , Contaminantes del Suelo , Arcilla , Suelo/química , Contaminantes del Suelo/análisis , Contaminación Ambiental
14.
Environ Sci Pollut Res Int ; 30(5): 12030-12040, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36103075

RESUMEN

Exposure to arsenic (As) from a diet of contaminated rice is a widespread problem and a serious concern in several parts of the world. There is a need to develop sustainable, effective, and reliable strategies to reduce As accumulation in rice. Our goal was to develop and test a simple crop rotation method of alternating rice with the As hyperaccumulator plant, Chinese brake fern (Pteris vitatta L.), to reduce As concentrations in rice grains. A greenhouse column study was performed for 2 years using As-contaminated rice paddy soil from West Bengal. Rice was grown under flooded conditions and irrigated with As-contaminated water to simulate field conditions. Chinese brake fern was grown between two rice cycles in experimental columns, while control columns were left unplanted. Our results show that at the end of two cycles, there was a statistically significant decrease in soil As concentrations in the treatment columns compared to the control columns. After one rotation with the fern, there was a significant decline in As concentrations in rice grains in treatment plants and a concomitant decline in both noncarcinogenic and carcinogenic health risks. Our results indicate that there could be substantial benefit in implementing this simple crop rotation model to help lower human health risks from As exposure via rice ingestion.


Asunto(s)
Arsénico , Oryza , Pteris , Contaminantes del Suelo , Humanos , Contaminación del Agua , Suelo , Producción de Cultivos
15.
Molecules ; 29(1)2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38202646

RESUMEN

Vetiver root is widely used to produce essential oils in the aromatherapy industry. After the extraction of oil, the roots are disposed of as waste. The central objective of this research was to explore the conversion of this waste into a resource using a circular economy framework. To generate biochar, vetiver roots were pyrolyzed at different temperatures (300, 500, and 700 °C) and residence times (30, 60, and 120 min). Analysis showed the root biochar generated at 500 °C and held for 60 min had the highest surface area of 308.15 m2/g and a yield of 53.76%, in addition to other favorable characteristics. Comparatively, the surface area and the yield of shoot biochar were significantly lower compared to those of the roots. Repurposing the spent root biomass for environmental and agronomic benefits, our circular economy concept prevents the plant tissue from entering landfills or the waste stream.


Asunto(s)
Agricultura , Aromaterapia , Carbón Orgánico , Biomasa , Industrias
16.
Front Microbiol ; 13: 996220, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36419419

RESUMEN

Information on the role of boron (B) on soil physico-chemical and biological entities is scarce, and the precise mechanism in soil is still obscure. Present field investigation aimed to assessing the implication of direct and residual effect of graded levels of applied-B on soil biological entities and its concomitant impact on crop productivity. The treatments comprised of five graded levels of B with four replications. To assess the direct effect of B-fertilization, cauliflower was grown as a test crop wherein, B-fertilization was done every year. For assessment of succeeding residual effects of B-fertilization, cowpea and okra were grown as test crops and, B-fertilization was phased out in both crops. The 100% recommended dose of NPK (RDF) along with FYM was uniformly applied to all crops under CCOCS. Results indicated that the direct effect of B had the edge over residual effect of B in affecting soil physico-chemical and biological entities under CCOCS. Amongst the graded levels of B, application of the highest B level (2 kg ha-1) was most prominent in augmenting microbiological pools in soil at different crop growth stages. The order of B treatments in respect of MBC, MBN, and soil respiration at different crop growth stages was 2.0 kg B ha-1 > 1.5 kg B ha-1 > 1.0 kg B ha-1 > 0.5 kg B ha-1 > 0 kg B ha-1, respectively. Moreover, maximum recoveries of potentially mineralizable-C (PMC) and potentially mineralizable-N (PMN) were noticed under 2 kg B ha-1. Analogous trend was recorded in soil microbial populations at different crop growth stages. Similarly, escalating B levels up to 2 kg B ha-1 exhibited significantly greater soil enzymatic activities viz., arylsulphatase (AS), dehydrogenase (DH), fluorescein diacetate (FDA) and phosphomonoesterase (PMA), except urease enzyme (UE) which showed an antagonistic effect of applied-B in soil. Greater geometric mean enzyme activity (GMEA) and soil functional diversity index were recorded under 2 kg B ha-1 in CCOCS, at all crop growth stages over control. The inclusive results indicated that different soil physico-chemical and biological properties CCOCS can be invariably improved by the application of graded levels of B up to 2 kg B ha-1 in an acid Inceptisol.

17.
Elife ; 112022 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-36350294

RESUMEN

Cyclic AMP (cAMP) is known to function as a global regulator of Mycobacterium tuberculosis gene expression. Sequence-based transcriptomic profiling identified the mycobacterial regulon controlled by the cAMP receptor protein, CRP. In this study, we identified a new subset of CRP-associated genes including virulence determinants which are also under the control of a major regulator, PhoP. Our results suggest that PhoP as a DNA binding transcription factor, impacts expression of these genes, and phosphorylated PhoP promotes CRP recruitment at the target promoters. Further, we uncover a distinct regulatory mechanism showing that activation of these genes requires direct recruitment of both PhoP and CRP at their target promoters. The most fundamental biological insight is derived from the inhibition of CRP binding at the regulatory regions in a PhoP-deleted strain owing to CRP-PhoP protein-protein interactions. Based on these results, a model is proposed suggesting how CRP and PhoP function as co-activators of the essential pathogenic determinants. Taken together, these results uncover a novel mode of regulation where a complex of two interacting virulence factors impact expression of virulence determinants. These results have significant implications on TB pathogenesis.


Asunto(s)
Mycobacterium tuberculosis , Mycobacterium tuberculosis/metabolismo , Virulencia/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Regulón , Regulación Bacteriana de la Expresión Génica
18.
Molecules ; 27(21)2022 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-36364028

RESUMEN

Over the past several decades, the value of drinking water treatment residuals (WTRs), a byproduct of the coagulation process during water purification, has been recognized in various environmental applications, including sustainable remediation of phosphorus (P)-enriched soils. Aluminum-based WTRs (Al-WTRs) are suitable adsorbent materials for P, which can be obtained and processed inexpensively. However, given their heterogeneous nature, it is essential to identify an easily analyzable chemical property that can predict the capability of Al-WTRs to bind P before soil amendment. To address this issue, thirteen Al-WTRs were collected from various geographical locations around the United States. The non-hazardous nature of the Al-WTRs was ascertained first. Then, their P adsorption capacities were determined, and the chemical properties likely to influence their adsorption capacities were examined. Statistical models were built to identify a single property to best predict the P adsorption capacity of the Al-WTRs. Results show that all investigated Al-WTRs are safe for environmental applications, and oxalate-extractable aluminum is a significant indicator of the P adsorption capacity of Al-WTRs (p-value = 0.0002, R2 = 0.7). This study is the first to report a simple chemical test that can be easily applied to predict the efficacy of Al-WTRs in binding P before their broadscale land application.


Asunto(s)
Agua Potable , Purificación del Agua , Estados Unidos , Fósforo/química , Aluminio/química , Adsorción , Purificación del Agua/métodos , Suelo
19.
Molecules ; 27(21)2022 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-36363996

RESUMEN

Phosphorus and heavy metals are washed off and transported with stormwater runoff to nearby surface water bodies resulting in environmental and human health risks. Catch basins remain one of the primary gateways through which stormwater runoff and pollutants from urban areas are transported. Retrofitting catch basins to enhance their phosphorus and heavy metal removal can be an effective approach. In this study, aluminum-based water treatment residual (WTR, a non-hazardous byproduct of the water treatment process) was granulated via a green method to serve as a sustainable filter material, called WTR granules, for enhancing the capabilities of catch basins to remove phosphorus and heavy metals. The WTR granules were field tested in a parking lot in Hoboken, New Jersey. Twelve storm events were monitored. The results showed that the WTR granules significantly (p < 0.05) reduced dissolved P, Cu, and Zn, as well as total P, Cu, Pb, and Zn concentrations in stormwater runoff without signs of disintegration. No flooding or water ponding was observed during the implementation. Results suggest the WTR granules are an inexpensive, green filter material that can be used for retrofitting catch basins to remove phosphorus and heavy metals effectively.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Humanos , Fósforo , Residuos Industriales , Contaminantes Químicos del Agua/análisis , Lluvia , Metales Pesados/análisis
20.
J Bacteriol ; 204(6): e0011022, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35608366

RESUMEN

Mycobacterium tuberculosis encounters numerous stress conditions within the host, but how it is able to mount a coupled stress response remains unknown. Growing evidence suggests that under acidic pH, M. tuberculosis modulates redox homeostasis. In an attempt to dissect the mechanistic details of responses to multiple stress conditions, here we studied the significance of connectivity of extracytoplasmic sigma factors with PhoP. We show that PhoP impacts the mycothiol redox state, and the H37Rv ΔphoP deletion mutant strain displays a significantly higher susceptibility to redox stress than the wild-type bacilli. To probe how the two regulators PhoP and redox-active sigma factor SigH contribute to redox homeostasis, we show that SigH controls expression of redox-active thioredoxin genes, a major mycobacterial antioxidant system, and under redox stress, SigH, but not PhoP, is recruited at the target promoters. Consistent with these results, interaction between PhoP and SigH fails to impact redox-dependent gene expression. This is in striking contrast to our previous results showing PhoP-dependent SigE recruitment within acid-inducible mycobacterial promoters to maintain pH homeostasis. Our subsequent results demonstrate reduced PhoP-SigH interaction in the presence of diamide and enhanced PhoP-SigE interaction under low pH. These contrasting results uncover the underlying mechanism of the mycobacterial adaptive program, coupling low pH with maintenance of redox homeostasis. IMPORTANCE M. tuberculosis encounters reductive stress under acidic pH. To investigate the mechanism of coupled stress response, we show that PhoP plays a major role in mycobacterial redox stress response. We observed a strong correlation of phoP-dependent redox-active expression of thioredoxin genes, a major mycobacterial antioxidant system. Further probing of functioning of regulators revealed that while PhoP controls pH homeostasis via its interaction with SigE, direct recruitment of SigH, but not PhoP-SigH interaction, controls expression of thioredoxin genes. These strikingly contrasting results showing enhanced PhoP-SigE interaction under acidic pH and reduced PhoP-SigH interaction under redox conditions uncover the underlying novel mechanism of the mycobacterial adaptive program, coupling low pH with maintenance of redox homeostasis.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Antioxidantes/metabolismo , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Humanos , Mycobacterium tuberculosis/metabolismo , Factor sigma/metabolismo , Tiorredoxinas/genética , Tiorredoxinas/metabolismo , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA