Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Cancers (Basel) ; 15(9)2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37174007

RESUMEN

Merkel cell carcinoma (MCC) is frequently caused by the Merkel cell polyomavirus (MCPyV), and MCPyV-positive tumor cells depend on expression of the virus-encoded T antigens (TA). Here, we identify 4-[(5-methyl-1H-pyrazol-3-yl)amino]-2H-phenyl-1-phthalazinone (PHT)-a reported inhibitor of Aurora kinase A-as a compound inhibiting growth of MCC cells by repressing noncoding control region (NCCR)-controlled TA transcription. Surprisingly, we find that TA repression is not caused by inhibition of Aurora kinase A. However, we demonstrate that ß-catenin-a transcription factor repressed by active glycogen synthase kinase 3 (GSK3)-is activated by PHT, suggesting that PHT bears a hitherto unreported inhibitory activity against GSK3, a kinase known to function in promoting TA transcription. Indeed, applying an in vitro kinase assay, we demonstrate that PHT directly targets GSK3. Finally, we demonstrate that PHT exhibits in vivo antitumor activity in an MCC xenograft mouse model, suggesting a potential use in future therapeutic settings for MCC.

2.
Cancer Lett ; 524: 259-267, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34715251

RESUMEN

Merkel cell carcinoma is an aggressive skin cancer frequently caused by the Merkel cell polyomavirus (MCPyV). Since proliferation of MCPyV-positive MCC tumor cells strictly depends on expression of the virus-encoded T antigens (TA), these proteins theoretically represent ideal targets for different kinds of therapeutic approaches. Here we developed a cell-based assay to identify compounds which specifically inhibit growth of MCC cells by repressing TA expression. Applying this technique we screened a kinase inhibitor library and identified six compounds targeting glycogen synthase kinase 3 (GSK3) such as CHIR99021 as suppressors of TA transcription in MCC cells. Involvement of GSK3α and -ß in the regulation of TA-expression was confirmed by combining GSK3A knockout with inducible GSK3B shRNA knockdown since double knockouts could not be generated. Finally, we demonstrate that CHIR99021 exhibits in vivo antitumor activity in an MCC xenograft mouse model suggesting GSK3 inhibitors as potential therapeutics for the treatment of MCC in the future.


Asunto(s)
Antígenos Virales de Tumores/genética , Carcinoma de Células de Merkel/tratamiento farmacológico , Glucógeno Sintasa Quinasa 3/genética , Neoplasias Cutáneas/tratamiento farmacológico , Animales , Carcinoma de Células de Merkel/genética , Carcinoma de Células de Merkel/patología , Carcinoma de Células de Merkel/virología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Humanos , Poliomavirus de Células de Merkel/efectos de los fármacos , Poliomavirus de Células de Merkel/patogenicidad , Ratones , Piridinas/farmacología , Pirimidinas/farmacología , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología
3.
J Invest Dermatol ; 142(3 Pt A): 516-527, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34480892

RESUMEN

Although virus-negative Merkel cell carcinoma (MCC) is characterized by a high frequency of UV-induced mutations, the expression of two viral oncoproteins is regarded as a key mechanism driving Merkel cell polyomavirus‒positive MCC. The cells in which these molecular events initiate MCC oncogenesis have yet not been identified for both MCC subsets. A considerable proportion of virus-negative MCC is found in association with squamous cell carcinoma (SCC), suggesting (i) coincidental collision, (ii) one providing a niche for the other, or (iii) one evolving from the other. Whole-exome sequencing of four combined tumors consisting of SCC in situ and Merkel cell polyomavirus‒negative MCC showed many mutations shared between SCC and MCC in all cases, indicating a common ancestry and thereby a keratinocytic origin of these MCCs. Moreover, analyses of the combined cases as well as of pure SCC and MCC suggest that RB1 inactivation in SCC facilitates MCC development and that epigenetic changes may contribute to the SCC/MCC transition.


Asunto(s)
Carcinoma in Situ , Carcinoma de Células de Merkel , Carcinoma de Células Escamosas , Poliomavirus de Células de Merkel , Neoplasias Cutáneas , Carcinoma de Células de Merkel/genética , Carcinoma de Células de Merkel/patología , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Humanos , Poliomavirus de Células de Merkel/genética , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología
4.
Cell Rep ; 36(5): 109490, 2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34348155

RESUMEN

Pancreatic ß-cell failure is the key pathogenic element of the complex metabolic deterioration in type 2 diabetes (T2D); its underlying pathomechanism is still elusive. Here, we identify pleckstrin homology domain leucine-rich repeat protein phosphatases 1 and 2 (PHLPP1/2) as phosphatases whose upregulation leads to ß-cell failure in diabetes. PHLPP levels are highly elevated in metabolically stressed human and rodent diabetic ß-cells. Sustained hyper-activation of mechanistic target of rapamycin complex 1 (mTORC1) is the primary mechanism of the PHLPP upregulation linking chronic metabolic stress to ultimate ß-cell death. PHLPPs directly dephosphorylate and regulate activities of ß-cell survival-dependent kinases AKT and MST1, constituting a regulatory triangle loop to control ß-cell apoptosis. Genetic inhibition of PHLPPs markedly improves ß-cell survival and function in experimental models of diabetes in vitro, in vivo, and in primary human T2D islets. Our study presents PHLPPs as targets for functional regenerative therapy of pancreatic ß cells in diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2/enzimología , Diabetes Mellitus Tipo 2/patología , Células Secretoras de Insulina/enzimología , Proteínas Nucleares/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Animales , Apoptosis , Supervivencia Celular , Dieta Alta en Grasa , Femenino , Eliminación de Gen , Factor de Crecimiento de Hepatocito/metabolismo , Humanos , Secreción de Insulina , Células Secretoras de Insulina/patología , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones Noqueados , Modelos Biológicos , Biosíntesis de Proteínas , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Estrés Fisiológico , Regulación hacia Arriba
5.
Cancers (Basel) ; 12(7)2020 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-32708246

RESUMEN

Merkel cell carcinoma (MCC) is an aggressive skin cancer frequently caused by the Merkel cell polyomavirus (MCPyV). It is still under discussion, in which cells viral integration and MCC development occurs. Recently, we demonstrated that a virus-positive MCC derived from a trichoblastoma, an epithelial neoplasia bearing Merkel cell (MC) differentiation potential. Accordingly, we hypothesized that MC progenitors may represent an origin of MCPyV-positive MCC. To sustain this hypothesis, phenotypic comparison of trichoblastomas and physiologic human MC progenitors was conducted revealing GLI family zinc finger 1 (GLI1), Keratin 17 (KRT 17), and SRY-box transcription factor 9 (SOX9) expressions in both subsets. Furthermore, GLI1 expression in keratinocytes induced transcription of the MC marker SOX2 supporting a role of GLI1 in human MC differentiation. To assess a possible contribution of the MCPyV T antigens (TA) to the development of an MC-like phenotype, human keratinocytes were transduced with TA. While this led only to induction of KRT8, an early MC marker, combined GLI1 and TA expression gave rise to a more advanced MC phenotype with SOX2, KRT8, and KRT20 expression. Finally, we demonstrated MCPyV-large T antigens' capacity to inhibit the degradation of the MC master regulator Atonal bHLH transcription factor 1 (ATOH1). In conclusion, our report suggests that MCPyV TA contribute to the acquisition of an MC-like phenotype in epithelial cells.

6.
Cancers (Basel) ; 12(4)2020 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-32283634

RESUMEN

Merkel cell carcinoma (MCC) is a rare and highly aggressive skin cancer with frequent viral etiology. Indeed, in about 80% of cases, there is an association with Merkel cell polyomavirus (MCPyV); the expression of viral T antigens is crucial for growth of virus-positive tumor cells. Since artesunate-a drug used to treat malaria-has been reported to possess additional anti-tumor as well as anti-viral activity, we sought to evaluate pre-clinically the effect of artesunate on MCC. We found that artesunate repressed growth and survival of MCPyV-positive MCC cells in vitro. This effect was accompanied by reduced large T antigen (LT) expression. Notably, however, it was even more efficient than shRNA-mediated downregulation of LT expression. Interestingly, in one MCC cell line (WaGa), T antigen knockdown rendered cells less sensitive to artesunate, while for two other MCC cell lines, we could not substantiate such a relation. Mechanistically, artesunate predominantly induces ferroptosis in MCPyV-positive MCC cells since known ferroptosis-inhibitors like DFO, BAF-A1, Fer-1 and ß-mercaptoethanol reduced artesunate-induced death. Finally, application of artesunate in xenotransplanted mice demonstrated that growth of established MCC tumors can be significantly suppressed in vivo. In conclusion, our results revealed a highly anti-proliferative effect of the approved and generally well-tolerated anti-malaria compound artesunate on MCPyV-positive MCC cells, suggesting its potential usage for MCC therapy.

7.
J Invest Dermatol ; 140(5): 976-985, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31759946

RESUMEN

Merkel cell carcinoma (MCC), an aggressive neuroendocrine carcinoma of the skin, is to date the only human cancer known to be frequently caused by a polyomavirus. However, it is a matter of debate which cells are targeted by the Merkel cell polyomavirus (MCPyV) to give rise to the phenotypically multifaceted MCC cells. To assess the lineage of origin of MCPyV-positive MCC, genetic analysis of a very rare tumor combining benign trichoblastoma and MCPyV-positive MCC was conducted by massive parallel sequencing. Although MCPyV was found to be integrated only in the MCC part, six somatic mutations were shared by both tumor components. The mutational overlap between the trichoblastoma and MCPyV-positive MCC parts of the combined tumor implies that MCPyV integration occurred in an epithelial tumor cell before MCC development. Therefore, our report demonstrates that MCPyV-positive MCC can derive from the epithelial lineage.


Asunto(s)
Carcinoma de Células de Merkel/diagnóstico , Folículo Piloso/patología , Neoplasias/diagnóstico , Infecciones por Polyomavirus/diagnóstico , Poliomavirus/fisiología , Neoplasias Cutáneas/diagnóstico , Piel/patología , Anciano , Carcinogénesis , Diferenciación Celular , Linaje de la Célula , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Mutación/genética , Piel/virología , Infecciones Tumorales por Virus , Integración Viral
8.
Int J Mol Sci ; 20(20)2019 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-31652545

RESUMEN

Inflammatory processes in the skin augment collagen degradation due to the up-regulation of matrix metalloproteinases (MMPs). The aim of the present project was to study the specific impact of MMP-3 on collagen loss in skin and its interplay with the collagenase MMP-13 under inflammatory conditions mimicked by the addition of the pro-inflammatory cytokine tumor necrosis factor-α (TNF-α). Skin explants from MMP-3 knock-out (KO) mice or from transgenic (TG) mice overexpressing MMP-3 in the skin and their respective wild-type counterparts (WT and WTT) were incubated ex vivo for eight days. The rate of collagen degradation, measured by released hydroxyproline, was reduced (p < 0.001) in KO skin explants compared to WT control skin but did not differ (p = 0.47) between TG and WTT skin. Treatment with the MMP inhibitor GM6001 reduced hydroxyproline media levels from WT, WTT and TG but not from KO skin explants. TNF-α increased collagen degradation in the WT group (p = 0.0001) only. More of the active form of MMP-13 was observed in the three MMP-3 expressing groups (co-incubation with receptor-associated protein stabilized MMP-13 subforms and enhanced detection in the media). In summary, the innate level of MMP-3 seems responsible for the accelerated loss of cutaneous collagen under inflammatory conditions, possibly via MMP-13 in mice.


Asunto(s)
Colágeno/metabolismo , Metaloproteinasa 3 de la Matriz/metabolismo , Piel/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Animales , Dipéptidos/farmacología , Masculino , Metaloproteinasa 13 de la Matriz/genética , Metaloproteinasa 13 de la Matriz/metabolismo , Metaloproteinasa 3 de la Matriz/genética , Inhibidores de la Metaloproteinasa de la Matriz/farmacología , Ratones , Proteolisis , Piel/efectos de los fármacos
9.
Front Oncol ; 9: 451, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31245285

RESUMEN

Merkel cell carcinoma (MCC) is a primary neuroendocrine carcinoma of the skin. This neoplasia features aggressive behavior, resulting in a 5-year overall survival rate of 40%. In 2008, Feng et al. identified Merkel cell polyomavirus (MCPyV) integration into the host genome as the main event leading to MCC oncogenesis. However, despite identification of this crucial viral oncogenic trigger, the nature of the cell in which MCC oncogenesis occurs is actually unknown. In fact, several hypotheses have been proposed. Despite the large similarity in phenotype features between MCC tumor cells and physiological Merkel cells (MCs), a specialized subpopulation of the epidermis acting as mechanoreceptor of the skin, several points argue against the hypothesis that MCC derives directly from MCs. Alternatively, MCPyV integration could occur in another cell type and induce acquisition of an MC-like phenotype. Accordingly, an epithelial as well as a fibroblastic or B-cell origin of MCC has been proposed mainly based on phenotype similarities shared by MCC and these potential ancestries. The aim of this present review is to provide a comprehensive review of the current knowledge of the histogenesis of MCC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA