Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Toxicology ; 487: 153463, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36813253

RESUMEN

Methylmercury (MeHg), a global environmental pollutant, could seriously damage the central nervous system (CNS) and cause neurological disorders such as cerebellar symptoms. Although numerous studies have revealed detailed toxicity mechanisms of MeHg in neurons, toxicity in astrocytes is barely known. Here, we tried to shed light on the toxicity mechanisms of MeHg exposure in cultured normal rat cerebellar astrocytes (NRA), focusing on the involvement of reactive oxygen species (ROS) in MeHg toxicity by assessing the effects of major antioxidants Trolox, a free-radical scavenger, N-acetyl-L-cysteine (NAC), a potent thiol-containing antioxidant, and glutathione (GSH), an endogenous thiol-containing antioxidant. Exposure to MeHg at just approximately 2 µM for 96 h increased cell viability, which was accompanied by the increase in intracellular ROS level and at ≥ 5 µM induced significant cell death and lowered ROS level. Trolox and NAC suppressed 2 µM MeHg-induced increases in cell viability and ROS level corresponding to control, although GSH with 2 µM MeHg induced significant cell death and ROS increase. On the contrary, against 4 µM MeHg-induced cell loss and ROS decrease, NAC inhibited both cell loss and ROS decrease, Trolox inhibited cell loss and further enhanced ROS decrease, and GSH moderately inhibited cell loss and increased ROS level above the control level. MeHg-induced oxidative stress was suggested by increases in the protein expression levels of heme oxygenase-1 (HO-1), Hsp70, and Nrf2, except for the decrease in SOD-1 and no change in catalase. Furthermore, MeHg exposure dose-dependently induced increases in the phosphorylation of MAP kinases (ERK1/2, p38MAPK, and SAPK/JNK) and phosphorylation and/or expression levels of transcription factors (CREB, c-Jun, and c-Fos) in NRA. NAC successfully suppressed 2 µM MeHg-induced alterations in all of the above-mentioned MeHg-responsive factors, whereas Trolox suppressed some MeHg-responsive factors but failed to suppress MeHg-induced increases in the protein expression levels of HO-1 and Hsp70 and increase in p38MAPK phosphorylation. Protein expression analyses in NRA exposed to 2 µM MeHg and GSH were excluded because of devastating cell death. These results suggested that MeHg could induce aberrant NRA activation, and ROS must be substantially involved in the toxicity mechanism of MeHg in NRA; however, other factors should be assumed.


Asunto(s)
Antioxidantes , Compuestos de Metilmercurio , Ratas , Animales , Especies Reactivas de Oxígeno/metabolismo , Antioxidantes/farmacología , Antioxidantes/metabolismo , Sistema de Señalización de MAP Quinasas , Astrocitos , Estrés Oxidativo , Glutatión/metabolismo , Acetilcisteína/farmacología , Acetilcisteína/metabolismo , Células Cultivadas
2.
Neurotoxicology ; 88: 196-207, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34883095

RESUMEN

Diphenylarsinic acid (DPAA) is a non-natural pentavalent organic arsenic and was detected in well water in Kamisu, Ibaraki, Japan in 2003. Individuals that had consumed this arsenic-contaminated water developed cerebellar symptoms such as myoclonus. We previously revealed that DPAA exposure in rats in vitro and in vivo specifically affected astrocytes rather than neurons among cerebellar cells. Here, we evaluated adverse effects of DPAA in cultured normal human cerebellar astrocytes (NHA), which were compared with those in normal rat cerebellar astrocytes (NRA) exposed to DPAA at 10 µM for 96 h, focusing on aberrant activation of astrocytes; increase in cell viability, activation of MAP kinases (ERK1/2, p38MAPK, and SAPK/JNK) and transcription factors (CREB, c-Jun, and c-Fos), upregulation of oxidative stress-responsive factors (Nrf2, HO-1, and Hsp70), and also hypersecretion of brain cytokines (MCP-1, adrenomedullin, FGF-2, CXCL1, and IL-6) as reported in NRA. While DPAA exposure at 10 µM for 96 h had little effect on NHA, a higher concentration (50 µM for 96 h) and longer exposure (10 µM for 288 h) induced similar aberrant activation. Moreover, exposure to DPAA at 50 µM for 96 h or 10 µM for 288 h in NHA induced hypersecretion of cytokines induced in DPAA-exposed NRA (MCP-1, adrenomedullin, FGF-2, CXCL1, and IL-6), and IL-8 besides into culture medium. These results suggested that aberrantly activated human astrocytes by DPAA exposure might play a pivotal role in the pathogenesis of cerebellar symptoms, affecting adjacent neurons, microglia, brain blood vessels, or astrocyte itself through these brain cytokines in human.


Asunto(s)
Arsenicales/efectos adversos , Astrocitos/efectos de los fármacos , Cerebelo/efectos de los fármacos , Citocinas/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Factores de Transcripción/metabolismo , Animales , Arsenicales/administración & dosificación , Astrocitos/metabolismo , Western Blotting , Cerebelo/citología , Cerebelo/metabolismo , Relación Dosis-Respuesta a Droga , Ensayo de Inmunoadsorción Enzimática , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA