Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 350: 141078, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38160944

RESUMEN

Polyelectrolyte multilayer (PEM) deposition conditions can favorably or adversely affect the membrane filtration performance of various pollutants. Although pH and ionic strength have been proven to alter the characteristics of PEM, their role in determining the buildup interactions that control filtration efficacy has not yet been conclusively proved. A PEM constructed using electrostatic or non-electrostatic interactions from controlled deposition of a weak polyelectrolyte could retain both charged and uncharged pollutants from water. The fundamental relationship between polyelectrolyte charge density, PEM buildup interaction, and filtration performance was explored using a weak-strong electrolyte pair consisting of branching poly (ethyleneimine) and poly (styrene sulfonate) (PSS) across pH ranges of 4-10 and NaCl concentrations of 0 M-0.5 M. PEI/PSS multilayers at acidic pH were dominated by electrostatic interactions, which favored the selective removal of a charged solute, phosphate over chloride, while at alkaline pH, non-electrostatic interactions dominated, which favored the removal of oxybenzone (OXY), a neutral hydrophobic solute. The key factor determining these interactions was the charge density of PEI, which is controlled by pH and ionic strength of the deposition solutions. These findings indicate that the control of buildup interactions can largely influence the physico-chemical and transport characteristics of PEM membranes.


Asunto(s)
Contaminantes Ambientales , Fosfatos , Polielectrolitos , Electrólitos/química , Soluciones
2.
Environ Sci Pollut Res Int ; 28(26): 34167-34186, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33970421

RESUMEN

Extensive use of surfactants in numerous fields resulted in their discharge into various environmental compartments including soil, sediment, and water. Alcohol ethoxysulfates (AES) together with alcohol ethoxylates (AE), alkyl sulfates (AS), and linear alkyl benzene sulfonates (LAS) find wide variety of applications in consumer products including both domestic and industrial applications. Consequently, all these surfactants pose several concerns to both aquatic and human health. In the context of environmental impacts, AES has almost equal importance as that of LAS though the literature on this topic is only emerging. This review provides a detailed overview on the various aspects of the anionic surfactant, AES, such as toxicity of AES, its fate in the ecosystem, technical advancements in the area of identification and quantification, its occurrence and distribution in different environmental compartments spanning across the world, and finally a remark of its potential removal strategy from the environment.


Asunto(s)
Monitoreo del Ambiente , Contaminantes Químicos del Agua , Biodegradación Ambiental , Ecosistema , Humanos , Sulfatos/análisis , Tensoactivos/análisis , Contaminantes Químicos del Agua/análisis
3.
Sci Total Environ ; 749: 141319, 2020 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-32822914

RESUMEN

A low saline backwater canal, mainly utilized for domestic and agricultural purposes, has been analyzed for the possible presence of organic micropollutants (OMP) and their potential removal was explored by multilayered microfiltration membranes. The qualitative as well as quantitative analysis were carried out for a span of one year using the technique of liquid chromatography connected with high resolution mass spectrometry (LC-Q-TOF-MS). The identification of the formally unknown compounds was initially done using non-target analysis based on the mass accuracy, isotopic pattern and MS/MS spectral interpretation. Results of the non target screening revealed the presence of 11 OMPs. Five of these OMPs were confirmed using standards; these include chlorophene (CHP), oxybenzone (OXY), N, N-diethyl-meta-toluamide (DEET), N, N-diethyl-benzamide (DEB) and dibutyl phthalate (DBP). Among the confirmed OMPs, the highest concentration was observed for DBP (244.61 ng l-1). The most frequently observed OMP in the study area was DBP while the least was DEB which is an insect repellent as well as a degradation product of DEET. The ecological risk associated with the target compounds has also been analyzed by calculating the risk quotient (RQ) and the results revealed that at the detected levels, these compounds are capable of causing low to medium risk. Low pressure (<0.3 bar) filtrations of the compounds were attempted using microfiltration (MF) and, poly(ethyleneimine)/poly(styrene sulfonate) (PEI/PSS) multi-layered MF membrane for spiked ultrapure water and also for natural water from the back-water canal. The batch mode illustrates nearly complete removal of CHP and OXY in spiked solutions and a good removal efficiency from natural water. The effect of coexisting ions and surfactants in feed is also illustrated. The high efficiency of the removal of both CHP and OXY, in such a complex medium highlights the potential application of the present method for the removal of similar OMPs in natural waters.

4.
Environ Sci Pollut Res Int ; 25(21): 20527-20539, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29116531

RESUMEN

The present study describes the monitoring of some of the major classes of surfactants in water. The separation, identification, and the quantitative estimation of the compounds were achieved using LC-Q-ToF-MS. The analyses revealed the presence of variety of surfactants including linear alkylbenzene sulfonate (LAS), alcohol ethoxysulfates (AES), and alcohol ethoxylates (AE). Further, emphasis was given to AES as they are one of the most produced and consumed surfactants in the world. And as far as India is concerned, the present study is one of the most significant attempt regarding the identification and quantification of AES. The data obtained during the analysis revealed that the average concentration of AES C12Ex varied from 0.7 to 13.6 µg L-1 while that of C14Ex ranged between 1.3 and 10.4 µg L-1. The risk assessment revealed that higher chain AES are capable of posing medium level risk to the aquatic compartment. In addition, the study also included the physicochemical analysis of water from the selected area. Water was found to be acidic in nature and the salinity, TDS, and EC values were found to be high during the pre-monsoon season. The order of the levels of anionic constituents was of Cl->SO42-SO42->F->NO32- ≅ PO42- while that of cations were Na+ > Mg2+ > K+ > Ca2+. Results of correlation analysis showed that statistically negative correlation exists between AES homologs and pH while slight positive correlations were found between AES and other parameters including TDS and EC. The suitability of this water for domestic and agricultural purposes has been examined on the ground of basic quality indices such as the water quality index (WQI) and sodium adsorption ratio (SAR). The WQI measurements also revealed that the water quality of the region falls under the "very poor" category especially during the pre-monsoon season. The study could explore the cumulative share of these canals in the quality impairment of the receiving Vembanad Lake.


Asunto(s)
Monitoreo del Ambiente/métodos , Lagos/química , Tensoactivos/química , Contaminantes Químicos del Agua/química , Calidad del Agua , Agricultura , India , Salinidad , Abastecimiento de Agua
5.
J Hazard Mater ; 300: 202-209, 2015 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-26184803

RESUMEN

The study on the possible pathway of hydroxyl radicals mediated sonolytic degradation of paraben in water is reported. Methylparaben (MPB) which is the most utilized of paraben family is selected as a model emerging pollutant. The influence of common anions and some selected emerging contaminants that may coexist in typical water matrix on the degradation pattern is analyzed alongside. Among the anions, carbonate presents a negative influence which is attributed to the competition for OH radical. Some emerging contaminants also showed negative impact on degradation as was clear from HPLC data. The intermediates, analyzed by LC-Q-TOF-MS include hydroxylated and hydrolytic products. Three major steps (aromatic hydroxylation, hydroxylation at the ester chain and hydrolysis) are proposed to involve in the reaction of OH radical with MPB which ultimately leads to mineralization. The intensity of formation and decay of mono and dihydroxy products of MPB in the presence of additives have also been evaluated. COD analysis indicates a percentage reduction of 98% at 90 min of sonolysis and further increase in the degradation time resulted complete mineralization, which became evident from the mass spectrometric data. MTT assay revealed considerable decrease in the potential cytotoxicity.


Asunto(s)
Parabenos/química , Ondas Ultrasónicas , Contaminantes Químicos del Agua/química , Ácido Benzoico/química , Radical Hidroxilo/química , Ácidos Ftálicos/química , Triclosán/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA