Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
PLoS Pathog ; 20(3): e1012093, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38512999

RESUMEN

Rift Valley fever virus (RVFV) is a viral zoonosis that causes severe disease in ruminants and humans. The nonstructural small (NSs) protein is the primary virulence factor of RVFV that suppresses the host's antiviral innate immune response. Bioinformatic analysis and AlphaFold structural modeling identified four putative LC3-interacting regions (LIR) motifs (NSs 1-4) in the RVFV NSs protein, which suggest that NSs interacts with the host LC3-family proteins. Using, isothermal titration calorimetry, X-ray crystallography, co-immunoprecipitation, and co-localization experiments, the C-terminal LIR motif (NSs4) was confirmed to interact with all six human LC3 proteins. Phenylalanine at position 261 (F261) within NSs4 was found to be critical for the interaction of NSs with LC3, retention of LC3 in the nucleus, as well as the inhibition of autophagy in RVFV infected cells. These results provide mechanistic insights into the ability of RVFV to overcome antiviral autophagy through the interaction of NSs with LC3 proteins.


Asunto(s)
Fiebre del Valle del Rift , Virus de la Fiebre del Valle del Rift , Animales , Humanos , Virus de la Fiebre del Valle del Rift/metabolismo , Proteínas no Estructurales Virales/metabolismo , Autofagia , Antivirales/metabolismo
2.
Sci Rep ; 13(1): 17796, 2023 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-37853101

RESUMEN

Parkinson's disease (PD) is one of the most common neurodegenerative diseases, but no disease modifying therapies have been successful in clinical translation presenting a major unmet medical need. A promising target is alpha-synuclein or its aggregated form, which accumulates in the brain of PD patients as Lewy bodies. While it is not entirely clear which alpha-synuclein protein species is disease relevant, mere overexpression of alpha-synuclein in hereditary forms leads to neurodegeneration. To specifically address gene regulation of alpha-synuclein, we developed a CRISPR interference (CRISPRi) system based on the nuclease dead S. aureus Cas9 (SadCas9) fused with the transcriptional repressor domain Krueppel-associated box to controllably repress alpha-synuclein expression at the transcriptional level. We screened single guide (sg)RNAs across the SNCA promoter and identified several sgRNAs that mediate downregulation of alpha-synuclein at varying levels. CRISPRi downregulation of alpha-synuclein in iPSC-derived neuronal cultures from a patient with an SNCA genomic triplication showed functional recovery by reduction of oxidative stress and mitochondrial DNA damage. Our results are proof-of-concept in vitro for precision medicine by targeting the SNCA gene promoter. The SNCA CRISPRi approach presents a new model to understand safe levels of alpha-synuclein downregulation and a novel therapeutic strategy for PD and related alpha-synucleinopathies.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Enfermedad de Parkinson , Humanos , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Staphylococcus aureus Resistente a Meticilina/genética , Staphylococcus aureus/genética , ADN Mitocondrial/metabolismo , Sistemas CRISPR-Cas , ARN Guía de Sistemas CRISPR-Cas , Células Madre/metabolismo , Estrés Oxidativo/genética
3.
bioRxiv ; 2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36747875

RESUMEN

Parkinson's disease (PD) is one of the most common neurodegenerative diseases, but no disease modifying therapies have been successful in clinical translation presenting a major unmet medical need. A promising target is alpha-synuclein or its aggregated form, which accumulates in the brain of PD patients as Lewy bodies. While it is not entirely clear which alpha-synuclein protein species is disease relevant, mere overexpression of alpha-synuclein in hereditary forms leads to neurodegeneration. To specifically address gene regulation of alpha-synuclein, we developed a CRISPR interference (CRISPRi) system based on the nuclease dead S. aureus Cas9 (SadCas9) fused with the transcriptional repressor domain Krueppel-associated box to controllably repress alpha-synuclein expression at the transcriptional level. We screened single guide (sg)RNAs across the SNCA promoter and identified several sgRNAs that mediate downregulation of alpha-synuclein at varying levels. CRISPRi downregulation of alpha-synuclein in iPSC-derived neuronal cultures from a patient with an SNCA genomic triplication showed functional recovery by reduction of oxidative stress and mitochondrial DNA damage. Our results are proof-of-concept in vitro for precision medicine by targeting the SNCA gene promoter. The SNCA CRISPRi approach presents a new model to understand safe levels of alpha-synuclein downregulation and a novel therapeutic strategy for PD and related alpha-synucleinopathies.

4.
Int J Mol Sci ; 21(16)2020 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-32785033

RESUMEN

Neurodevelopmental and late-onset neurodegenerative disorders present as separate entities that are clinically and neuropathologically quite distinct. However, recent evidence has highlighted surprising commonalities and converging features at the clinical, genomic, and molecular level between these two disease spectra. This is particularly striking in the context of autism spectrum disorder (ASD) and Parkinson's disease (PD). Genetic causes and risk factors play a central role in disease pathophysiology and enable the identification of overlapping mechanisms and pathways. Here, we focus on clinico-genetic studies of causal variants and overlapping clinical and cellular features of ASD and PD. Several genes and genomic regions were selected for our review, including SNCA (alpha-synuclein), PARK2 (parkin RBR E3 ubiquitin protein ligase), chromosome 22q11 deletion/DiGeorge region, and FMR1 (fragile X mental retardation 1) repeat expansion, which influence the development of both ASD and PD, with converging features related to synaptic function and neurogenesis. Both PD and ASD display alterations and impairments at the synaptic level, representing early and key disease phenotypes, which support the hypothesis of converging mechanisms between the two types of diseases. Therefore, understanding the underlying molecular mechanisms might inform on common targets and therapeutic approaches. We propose to re-conceptualize how we understand these disorders and provide a new angle into disease targets and mechanisms linking neurodevelopmental disorders and neurodegeneration.


Asunto(s)
Trastorno del Espectro Autista/genética , Neurogénesis/genética , Enfermedad de Parkinson/genética , alfa-Sinucleína/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Animales , Trastorno del Espectro Autista/sangre , Niño , Preescolar , Síndrome de DiGeorge/genética , Modelos Animales de Enfermedad , Femenino , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Dosificación de Gen , Humanos , Lactante , Recién Nacido , Masculino , Ratones , Persona de Mediana Edad , Enfermedad de Parkinson/sangre , Mutación Puntual , Sinapsis/metabolismo , Sinapsis/patología , Ubiquitina-Proteína Ligasas/genética , alfa-Sinucleína/sangre
5.
BMC Cancer ; 19(1): 1239, 2019 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-31864341

RESUMEN

BACKGROUND: Colorectal cancer (CRC) is still a leading cause of death worldwide. Recent studies have pointed to an important role of microRNAs in carcinogenesis. Several microRNAs are described as aberrantly expressed in CRC tissues and in the serum of patients. However, functional outcomes of microRNA aberrant expression still need to be explored at the cellular level. Here, we aimed to investigate the effects of microRNAs aberrantly expressed in CRC samples in the proliferation and cell death of a CRC cell line. METHODS: We transfected 31 microRNA mimics into HCT116 cells. Total number of live propidium iodide negative (PI-) and dead (PI+) cells were measured 4 days post-transfection by using a high content screening (HCS) approach. HCS was further used to evaluate apoptosis (via Annexin V and PI staining), and to discern between intrinsic and extrinsic apoptotic pathways, by detecting cleaved Caspase 9 and 8, respectively. To reveal mRNA targets and potentially involved mechanisms, we performed microarray gene expression and functional pathway enrichment analysis. Quantitative PCR and western blot were used to validate potential mRNA targets. RESULTS: Twenty microRNAs altered the proliferation of HCT116 cells in comparison to control. miR-22-3p, miR-24-3p, and miR-101-3p significantly repressed cell proliferation and induced cell death. Interestingly, all anti-proliferative microRNAs in our study had been previously described as poorly expressed in the CRC samples. Predicted miR-101-3p targets that were also downregulated by in our microarray were enriched for genes associated with Wnt and cancer pathways, including MCL-1, a member of the BCL-2 family, involved in apoptosis. Interestingly, miR-101-3p preferentially downregulated the long anti-apoptotic MCL-1 L isoform, and reduced cell survival specifically by activating the intrinsic apoptosis pathway. Moreover, miR-101-3p also downregulated IL6ST, STAT3A/B, and MYC mRNA levels, genes associated with stemness properties of CRC cells. CONCLUSIONS: microRNAs upregulated in CRC tend to induce proliferation in vitro, whereas microRNAs poorly expressed in CRC halt proliferation and induce cell death. We provide novel evidence linking preferential inhibition of the anti-apoptotic MCL-1 L isoform by miR-101-3p and consequent activation of the intrinsic apoptotic pathway as potential mechanisms for its antitumoral activity, likely due to the inhibition of the IL-6/JAK/STAT signaling pathway.


Asunto(s)
Neoplasias Colorrectales/genética , MicroARNs/genética , Apoptosis/genética , Línea Celular Tumoral , Proliferación Celular/genética , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Femenino , Regulación Neoplásica de la Expresión Génica , Células HCT116 , Humanos , Masculino , MicroARNs/biosíntesis , MicroARNs/metabolismo
6.
Stem Cell Res Ther ; 10(1): 202, 2019 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-31287022

RESUMEN

BACKGROUND: By post-transcriptionally regulating multiple target transcripts, microRNAs (miRNAs or miR) play important biological functions. H1 embryonic stem cells (hESCs) and NTera-2 embryonal carcinoma cells (ECCs) are two of the most widely used human pluripotent model cell lines, sharing several characteristics, including the expression of miRNAs associated to the pluripotent state or with differentiation. However, how each of these miRNAs functionally impacts the biological properties of these cells has not been systematically evaluated. METHODS: We investigated the effects of 31 miRNAs on NTera-2 and H1 hESCs, by transfecting miRNA mimics. Following 3-4 days of culture, cells were stained for the pluripotency marker OCT4 and the G2 cell-cycle marker Cyclin B1, and nuclei and cytoplasm were co-stained with Hoechst and Cell Mask Blue, respectively. By using automated quantitative fluorescence microscopy (i.e., high-content screening (HCS)), we obtained several morphological and marker intensity measurements, in both cell compartments, allowing the generation of a multiparametric miR-induced phenotypic profile describing changes related to proliferation, cell cycle, pluripotency, and differentiation. RESULTS: Despite the overall similarities between both cell types, some miRNAs elicited cell-specific effects, while some related miRNAs induced contrasting effects in the same cell. By identifying transcripts predicted to be commonly targeted by miRNAs inducing similar effects (profiles grouped by hierarchical clustering), we were able to uncover potentially modulated signaling pathways and biological processes, likely mediating the effects of the microRNAs on the distinct groups identified. Specifically, we show that miR-363 contributes to pluripotency maintenance, at least in part, by targeting NOTCH1 and PSEN1 and inhibiting Notch-induced differentiation, a mechanism that could be implicated in naïve and primed pluripotent states. CONCLUSIONS: We present the first multiparametric high-content microRNA functional screening in human pluripotent cells. Integration of this type of data with similar data obtained from siRNA screenings (using the same HCS assay) could provide a large-scale functional approach to identify and validate microRNA-mediated regulatory mechanisms controlling pluripotency and differentiation.


Asunto(s)
Diferenciación Celular/genética , Ensayos Analíticos de Alto Rendimiento , MicroARNs/genética , Células Madre Pluripotentes/metabolismo , Línea Celular , Linaje de la Célula/genética , Ciclina B1/genética , Regulación del Desarrollo de la Expresión Génica/genética , Humanos , Factor 3 de Transcripción de Unión a Octámeros/genética , ARN Interferente Pequeño/genética , Transducción de Señal/genética
7.
Front Neurosci ; 12: 199, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29686602

RESUMEN

Alpha-synuclein (non A4 component of amyloid precursor, SNCA, NM_000345.3) plays a central role in the pathogenesis of Parkinson's disease (PD) and related Lewy body disorders such as Parkinson's disease dementia, Lewy body dementia, and multiple system atrophy. Since its discovery as a disease-causing gene in 1997, alpha-synuclein has been a central point of scientific interest both at the protein and gene level. Mutations, including copy number variants, missense mutations, short structural variants, and single nucleotide polymorphisms, can be causative for PD and affect conformational changes of the protein, can contribute to changes in expression of alpha-synuclein and its isoforms, and can influence regulation of temporal as well as spatial levels of alpha-synuclein in different tissues and cell types. A lot of progress has been made to understand both the physiological transcriptional and epigenetic regulation of the alpha-synuclein gene and whether changes in transcriptional regulation could lead to disease and neurodegeneration in PD and related alpha-synucleinopathies. Although the histopathological changes in these neurodegenerative disorders are similar, the temporal and spatial presentation and progression distinguishes them which could be in part due to changes or disruption of transcriptional regulation of alpha-synuclein. In this review, we describe different genetic alterations that contribute to PD and neurodegenerative conditions and review aspects of transcriptional regulation of the alpha-synuclein gene in the context of the development of PD. New technologies, advanced gene engineering and stem cell modeling, are on the horizon to shed further light on a better understanding of gene regulatory processes and exploit them for therapeutic developments.

8.
Curr Stem Cell Res Ther ; 13(4): 243-251, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29446747

RESUMEN

BACKGROUND: Induced pluripotent stem cells hold tremendous potential for biological and therapeutic applications. The development of efficient technologies for targeted genome alteration of stem cells in disease models is a prerequisite for utilizing stem cells to their full potential. The revolutionary technology for genome editing known as the clustered regularly interspaced short palindromic repeat (CRISPR)-associated protein 9 (Cas9) system is recently recognized as a powerful tool for editing DNA at specific loci. OBJECTIVE: The ease of use of the CRISPR-Cas9 technology will allow us to improve our understanding of genomic variation in disease processes via cellular and animal models. More recently, this system was modified to repress (CRISPR interference, CRISPRi) or activate (CRISPR activation, CRISPRa) gene expression without alterations in the DNA, which amplified the scope of applications of CRISPR systems for stem cell biology. RESULTS AND CONCLUSION: Here, we highlight latest advances of CRISPR-associated applications in human pluripotent stem cells. The challenges and future prospects of CRISPR-based systems for human research are also discussed.


Asunto(s)
Sistemas CRISPR-Cas/genética , Edición Génica , Células Madre Pluripotentes Inducidas/citología , Animales , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Edición Génica/métodos , Humanos
9.
Theriogenology ; 81(2): 326-31, 2014 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-24210669

RESUMEN

In vitro-produced embryos store high lipid content in cytoplasmic lipid droplets (LD), and reduction or removal of LD has been demonstrated to improve freeze-thaw viability. The Perilipin Adipophilin Tail-interacting Protein of 47 kD (PAT) family of proteins is involved in the formation and regulation of LD in many cell types, but their presence has not been addressed either in cattle oocytes or preimplantation embryos. Therefore, this study aimed to detect the expression of PAT family transcripts (Perilipin-2 [PLIN2] and Perilipin-3 [PLIN3]) in immature and in vitro-matured (IVM) oocytes, and in in vitro-produced embryos at the stages of two to four cells, eight to 16 cells, morulae (MO), and blastocyst (BL). The expression of PLIN3 was downregulated in response to IVM, and PLIN2 was comparatively more expressed than PLIN3 in IVM oocytes (P < 0.001). During the early stages of embryo development, PLIN2 expression reached its peak at the MO stage (P < 0.001) and decreased again at the BL stage. In contrast, PLIN3 was expressed in low levels during the earliest stages of development, slightly upregulated at the MO stage (P < 0.05), and greatly increased its expression at the BL stage (15-fold; P < 0.001). PLIN3 was comparatively more expressed than PLIN2 during embryo culture in most stages analyzed (P < 0.05), except in eight- to 16-cell embryos. These results indicate that PLIN2 might be involved in the maintenance of lipid stocks necessary to support embryo development after fertilization of IVM oocytes. Also, we hypothesize that PLIN3 is the main PAT protein responsible for stabilization of LD formed in consequence of the acute lipid load seen during embryo development. We confirmed the presence of both PLIN2 and PLIN3 proteins in BL at Day 7 using immunocytochemistry: these PAT proteins colocalized with LD stained with BODIPY. PLIN3 seemed to be more ubiquitously spread out in the cytoplasm than PLIN2, consistent with the pattern seen in adipocytes. These findings suggest that both elderly (bigger) and newly formed (smaller) LD, positive for PLIN2 and PLIN3 respectively, coexist in blastocysts. To our knowledge this is the first report showing that transcripts of the PAT family are present in cattle oocytes and embryos.


Asunto(s)
Bovinos/embriología , Desarrollo Embrionario , Proteínas de la Membrana/metabolismo , Oocitos/crecimiento & desarrollo , Proteínas de Transporte Vesicular/metabolismo , Animales , Fertilización In Vitro/veterinaria , Perilipina-2
10.
Genet Mol Biol ; 36(1): 22-7, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23569404

RESUMEN

Soroprevalence for Hepatitis C virus is reported as 2.12% in Northern Brazil, with about 50% of the patients exhibiting a sustained virological response (SVR). Aiming to associate polymorphisms in Killer Cell Immunoglobulin-like Receptors (KIR) with chronic hepatitis C and therapy responses we investigated 125 chronic patients and 345 controls. Additionally, 48 ancestry markers were genotyped to control for population stratification. The frequency of the KIR2DL2 and KIR2DL2+HLA-C(Asp80) gene and ligand was higher in chronic infected patients than in controls (p < 0.0009, OR = 3.4; p = 0.001, OR = 3.45). In fact, KIR2DL3 is a weaker inhibitor of NK activity than KIR2DL2, which could explain the association of KIR2DL2 with chronic infection. Moreover, KIR2DS2 and KIR2DS2+HLA-C(Asp80) (p < 0.0001, OR = 2.51; p = 0.0084, OR = 2.62) and KIR2DS3 (p < 0.0001; OR = 2.57) were associated with chronic infection, independently from KIR2DL2. No differences in ancestry composition were observed between control and patients, even with respect to therapy response groups. The allelic profile KIR2DL2/KIR2DS2/KIR2DS3 was associated with the chronic hepatitis C (p < 0.0001; OR = 3). Furthermore, the patients also showed a higher mean number of activating genes and a lower frequency of the homozygous AA profile, which is likely secondary to the association with non-AA and/or activating genes. In addition, the KIR2DS5 allele was associated with SVR (p = 0.0261; OR = 0.184).The ancestry analysis of samples ruled out any effects of population substructuring and did not evidence interethnic differences in therapy response, as suggested in previous studies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA