Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
1.
Elife ; 122024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38829685

RESUMEN

Precision gene editing in primary hematopoietic stem and progenitor cells (HSPCs) would facilitate both curative treatments for monogenic disorders as well as disease modelling. Precise efficiencies even with the CRISPR/Cas system, however, remain limited. Through an optimization of guide RNA delivery, donor design, and additives, we have now obtained mean precise editing efficiencies >90% on primary cord blood HSCPs with minimal toxicity and without observed off-target editing. The main protocol modifications needed to achieve such high efficiencies were the addition of the DNA-PK inhibitor AZD7648, and the inclusion of spacer-breaking silent mutations in the donor in addition to mutations disrupting the PAM sequence. Critically, editing was even across the progenitor hierarchy, did not substantially distort the hierarchy or affect lineage outputs in colony-forming cell assays or the frequency of high self-renewal potential long-term culture initiating cells. As modelling of many diseases requires heterozygosity, we also demonstrated that the overall editing and zygosity can be tuned by adding in defined mixtures of mutant and wild-type donors. With these optimizations, editing at near-perfect efficiency can now be accomplished directly in human HSPCs. This will open new avenues in both therapeutic strategies and disease modelling.


Asunto(s)
Edición Génica , Células Madre Hematopoyéticas , Humanos , Edición Génica/métodos , Sistemas CRISPR-Cas , ARN Guía de Sistemas CRISPR-Cas/genética , Sangre Fetal/citología , Células Cultivadas
2.
Cell Rep ; 43(6): 114260, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38838225

RESUMEN

Immunotherapy remains underexploited in acute myeloid leukemia (AML) compared to other hematological malignancies. Currently, gemtuzumab ozogamicin is the only therapeutic antibody approved for this disease. Here, to identify potential targets for immunotherapeutic intervention, we analyze the surface proteome of 100 genetically diverse primary human AML specimens for the identification of cell surface proteins and conduct single-cell transcriptome analyses on a subset of these specimens to assess antigen expression at the sub-population level. Through this comprehensive effort, we successfully identify numerous antigens and markers preferentially expressed by primitive AML cells. Many identified antigens are targeted by therapeutic antibodies currently under clinical evaluation for various cancer types, highlighting the potential therapeutic value of the approach. Importantly, this initiative uncovers AML heterogeneity at the surfaceome level, identifies several antigens and potential primitive cell markers characterizing AML subgroups, and positions immunotherapy as a promising approach to target AML subgroup specificities.

3.
Sci Adv ; 10(12): eadl4018, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38517966

RESUMEN

In a phenotypical screen of 56 acute myeloid leukemia (AML) patient samples and using a library of 10,000 compounds, we identified a hit with increased sensitivity toward SF3B1-mutated and adverse risk AMLs. Through structure-activity relationship studies, this hit was optimized into a potent, specific, and nongenotoxic molecule called UM4118. We demonstrated that UM4118 acts as a copper ionophore that initiates a mitochondrial-based noncanonical form of cell death known as cuproptosis. CRISPR-Cas9 loss-of-function screen further revealed that iron-sulfur cluster (ISC) deficiency enhances copper-mediated cell death. Specifically, we found that loss of the mitochondrial ISC transporter ABCB7 is synthetic lethal to UM4118. ABCB7 is misspliced and down-regulated in SF3B1-mutated leukemia, creating a vulnerability to copper ionophores. Accordingly, ABCB7 overexpression partially rescued SF3B1-mutated cells to copper overload. Together, our work provides mechanistic insights that link ISC deficiency to cuproptosis, as exemplified by the high sensitivity of SF3B1-mutated AMLs. We thus propose SF3B1 mutations as a biomarker for future copper ionophore-based therapies.


Asunto(s)
Cobre , Leucemia Mieloide Aguda , Humanos , Cobre/metabolismo , Factores de Empalme de ARN/genética , Mutación , Leucemia Mieloide Aguda/genética , Ionóforos/farmacología , Fosfoproteínas/metabolismo
4.
Blood ; 143(10): 882-894, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38207291

RESUMEN

ABSTRACT: Ex vivo expansion of hematopoietic stem cells (HSCs) is gaining importance for cell and gene therapy, and requires a shift from dormancy state to activation and cycling. However, abnormal or excessive HSC activation results in reduced self-renewal ability and increased propensity for myeloid-biased differentiation. We now report that activation of the E3 ligase complex CRL3KBTBD4 by UM171 not only induces epigenetic changes through CoREST1 degradation but also controls chromatin-bound master regulator of cell cycle entry and proliferative metabolism (MYC) levels to prevent excessive activation and maintain lympho-myeloid potential of expanded populations. Furthermore, reconstitution activity and multipotency of UM171-treated HSCs are specifically compromised when MYC levels are experimentally increased despite degradation of CoREST1.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/metabolismo , Hematopoyesis , Trasplante de Células Madre Hematopoyéticas/métodos , Ciclo Celular , Diferenciación Celular
5.
Blood Adv ; 8(1): 112-129, 2024 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-37729615

RESUMEN

ABSTRACT: Acute megakaryoblastic leukemia (AMKL) is a rare, developmentally restricted, and highly lethal cancer of early childhood. The paucity and hypocellularity (due to myelofibrosis) of primary patient samples hamper the discovery of cell- and genotype-specific treatments. AMKL is driven by mutually exclusive chimeric fusion oncogenes in two-thirds of the cases, with CBFA2T3::GLIS2 (CG2) and NUP98 fusions (NUP98r) representing the highest-fatality subgroups. We established CD34+ cord blood-derived CG2 models (n = 6) that sustain serial transplantation and recapitulate human leukemia regarding immunophenotype, leukemia-initiating cell frequencies, comutational landscape, and gene expression signature, with distinct upregulation of the prosurvival factor B-cell lymphoma 2 (BCL2). Cell membrane proteomic analyses highlighted CG2 surface markers preferentially expressed on leukemic cells compared with CD34+ cells (eg, NCAM1 and CD151). AMKL differentiation block in the mega-erythroid progenitor space was confirmed by single-cell profiling. Although CG2 cells were rather resistant to BCL2 genetic knockdown or selective pharmacological inhibition with venetoclax, they were vulnerable to strategies that target the megakaryocytic prosurvival factor BCL-XL (BCL2L1), including in vitro and in vivo treatment with BCL2/BCL-XL/BCL-W inhibitor navitoclax and DT2216, a selective BCL-XL proteolysis-targeting chimera degrader developed to limit thrombocytopenia in patients. NUP98r AMKL were also sensitive to BCL-XL inhibition but not the NUP98r monocytic leukemia, pointing to a lineage-specific dependency. Navitoclax or DT2216 treatment in combination with low-dose cytarabine further reduced leukemic burden in mice. This work extends the cellular and molecular diversity set of human AMKL models and uncovers BCL-XL as a therapeutic vulnerability in CG2 and NUP98r AMKL.


Asunto(s)
Antineoplásicos , Leucemia Megacarioblástica Aguda , Humanos , Niño , Preescolar , Animales , Ratones , Leucemia Megacarioblástica Aguda/tratamiento farmacológico , Leucemia Megacarioblástica Aguda/genética , Leucemia Megacarioblástica Aguda/patología , Proteómica , Factores de Transcripción , Proteínas Proto-Oncogénicas c-bcl-2 , Proteínas Represoras
6.
Leukemia ; 38(3): 530-537, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38102204

RESUMEN

Monosomy 5 and deletions of the chromosome 5q (-5/del(5q)) are recurrent events in de novo adult acute myeloid leukemia (AML), reaching up to 40% of cases in secondary AML. These chromosome anomalies are associated with TP53 mutations and with very poor prognosis. Using the large Leucegene genomic and transcriptomic dataset composed of 48 -5/del(5q) patient specimens and 367 control AML, we identified DELE1 - located in the common deleted region - as the most consistently downregulated gene in these leukemias. DELE1 encodes a mitochondrial protein recently characterized as the relay of mitochondrial stress to the cytosol through a newly defined OMA1-DELE1-HRI pathway which ultimately leads to the activation of ATF4, the master transcription factor of the integrated stress response. Here, we showed that the partial loss of DELE1 expression observed in -5/del(5q) patients was sufficient to significantly reduce the sensitivity to mitochondrial stress in AML cells. Overall, our results suggest that DELE1 haploinsufficiency could represent a new driver mechanism in -5/del(5q) AML.


Asunto(s)
Haploinsuficiencia , Leucemia Mieloide Aguda , Proteínas Mitocondriales , Monosomía , Adulto , Humanos , Apoptosis/genética , Deleción Cromosómica , Cromosomas Humanos Par 5/genética , Leucemia Mieloide Aguda/genética , Proteínas Mitocondriales/genética
8.
Blood Adv ; 7(24): 7525-7538, 2023 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-37639313

RESUMEN

Leukemia stem cells (LSCs) share numerous features with healthy hematopoietic stem cells (HSCs). G-protein coupled receptor family C group 5 member C (GPRC5C) is a regulator of HSC dormancy. However, GPRC5C functionality in acute myeloid leukemia (AML) is yet to be determined. Within patient AML cohorts, high GPRC5C levels correlated with poorer survival. Ectopic Gprc5c expression increased AML aggression through the activation of NF-κB, which resulted in an altered metabolic state with increased levels of intracellular branched-chain amino acids (BCAAs). This onco-metabolic profile was reversed upon loss of Gprc5c, which also abrogated the leukemia-initiating potential. Targeting the BCAA transporter SLC7A5 with JPH203 inhibited oxidative phosphorylation and elicited strong antileukemia effects, specifically in mouse and patient AML samples while sparing healthy bone marrow cells. This antileukemia effect was strengthened in the presence of venetoclax and azacitidine. Our results indicate that the GPRC5C-NF-κB-SLC7A5-BCAAs axis is a therapeutic target that can compromise leukemia stem cell function in AML.


Asunto(s)
Aminoácidos de Cadena Ramificada , Leucemia Mieloide Aguda , Receptores Acoplados a Proteínas G , Animales , Humanos , Ratones , Aminoácidos de Cadena Ramificada/uso terapéutico , Transportador de Aminoácidos Neutros Grandes 1/uso terapéutico , Leucemia Mieloide Aguda/tratamiento farmacológico , FN-kappa B/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
9.
Blood Adv ; 7(19): 5717-5726, 2023 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-37467030

RESUMEN

Cord blood (CB) transplantation is hampered by low cell dose and high nonrelapse mortality (NRM). A phase 1-2 trial of UM171-expanded CB transplants demonstrated safety and favorable preliminary efficacy. The aim of the current analysis was to retrospectively compare results of the phase 1-2 trial with those after unmanipulated CB and matched-unrelated donor (MUD) transplants. Data from recipients of CB and MUD transplants were obtained from the Center for International Blood and Marrow Transplant Research (CIBMTR) database. Patients were directly matched for the number of previous allogeneic hematopoietic stem cell transplants (alloHCT), disease and refined Disease Risk Index. Patients were further matched by propensity score for age, comorbidity index, and performance status. Primary end points included NRM, progression-free survival (PFS), overall survival (OS), and graft-versus-host disease (GVHD)-free relapse-free survival (GRFS) at 1 and 2 years after alloHCT. Overall, 137 patients from CIBMTR (67 CB, 70 MUD) and 22 with UM171-expanded CB were included. NRM at 1 and 2 years was lower, PFS and GRFS at 2 years and OS at 1 year were improved for UM171-expanded CBs compared with CB controls. Compared with MUD controls, UM171 recipients had lower 1- and 2-year NRM, higher 2-year PFS, and higher 1- and 2-year GRFS. Furthermore, UM171-expanded CB recipients experienced less grades 3-4 acute GVHD and chronic GVHD compared with MUD graft recipients. Compared with real-world evidence with CB and MUD alloHCT, this study suggests that UM171-expanded CB recipients may benefit from lower NRM and higher GRFS. This trial was registered at www.clinicaltrials.gov as #NCT02668315.


Asunto(s)
Trasplante de Células Madre de Sangre del Cordón Umbilical , Enfermedad Injerto contra Huésped , Trasplante de Células Madre Hematopoyéticas , Humanos , Estudios Retrospectivos , Trasplante de Células Madre de Sangre del Cordón Umbilical/efectos adversos , Trasplante de Células Madre Hematopoyéticas/métodos , Enfermedad Injerto contra Huésped/etiología , Donantes de Tejidos
11.
Transplant Cell Ther ; 29(1): 34.e1-34.e7, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36243319

RESUMEN

With the advent of new cellular and targeted therapies, treatment options for relapsed and refractory (r/R) lymphomas have multiplied, and the optimal approach offering the best outcomes remains a matter of passionate debate. High-dose chemotherapy followed by autologous stem cell transplantation (ASCT) is still considered a treatment option for patients with chemosensitive lymphoma when cure is the expected goal. The myeloablative conditioning regimen preceding the stem cell infusion is considered the effective component of this approach. Carmustine (BCNU)-based preparative regimens, such as BEAM and BEAC, are considered the standard of care and have shown efficacy and low nonrelapse mortality (NRM). Comparative studies between conditioning regimens have failed to identify a better option. After a BCNU drug shortage in Canada followed by a steep increase in price, we elected to substitute BCNU for bendamustine (benda) in the preparative regimen. The purpose of this substitution was to improve response while preserving safety and controlling costs. From May 2015 to May 2018, a total of 131 consecutive lymphoma patients received benda-EAM conditioning. These patients were compared with 96 consecutive patients who received BCNU-based conditioning from January 2012 to May 2015. Apart from conditioning, supportive care measures were the same in the 2 groups. Patients receiving benda were older (55.7 years versus 51.1 years; P = .002). The development of grade ≥3 mucositis was more frequent with benda conditioning (39.5% versus 7.8%; P < .001) leading to a greater requirement for parenteral nutrition (48.9% versus 21.9%; P < .001). A transient creatinine increase >1.5 times the upper limit of normal (15.3% versus 4.2%; P < .008) and intensive care unit admission (6.9% versus 1.1%; P < .029) were more frequent with benda; however, there were no between-group differences in cardiac, pulmonary, or liver toxicity and NRM. With a median follow-up of 48 months for the benda group and 60 months for the BCNU group, benda was associated with significantly better progression-free survival (71% versus 61%; P = .040; hazard ratio [HR], 1.6; 95% confidence interval [CI], 1.0 to 2.7) and overall survival (86% vs 71%; P = .0066; HR, 2.6; 95% CI, 1.3 to 5.4) compared with BCNU-based conditioning regimens. While novel therapies emerge, our study demonstrates that benda-EAM is safe and effective and should be considered a valid alternative to BCNU conditioning to improve outcomes of patients with chemosensitive r/R lymphomas undergoing ASCT.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Linfoma , Humanos , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Clorhidrato de Bendamustina/uso terapéutico , Carmustina/uso terapéutico , Carmustina/efectos adversos , Citarabina/uso terapéutico , Trasplante Autólogo , Melfalán/uso terapéutico , Estudios Retrospectivos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Linfoma/tratamiento farmacológico
12.
Transplant Cell Ther ; 29(1): 44.e1-44.e9, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36334654

RESUMEN

Allogeneic hematopoietic cell transplantation (HCT) has curative potential in myeloma but remains hampered by high rates of relapse and chronic graft-versus-host disease (GVHD). We hypothesized that bortezomib (BTZ) as maintenance therapy after allo HCT could not only decrease the incidence of relapse but also the incidence and severity of chronic GVHD. The primary endpoint of this study was to determine whether BTZ maintenance decreases the incidence and severity of chronic GVHD using National Institutes of Health (NIH) criteria. The secondary endpoints were to determine the immunosuppression burden, organ involvement and survival (overall survival, progression-free survival) in patients either receiving or not receiving BTZ. In this retrospective study, we compared the outcome of 46 myeloma patients who received BTZ after upfront tandem auto-allo HCT between 2008 and 2020 to 61 patients without maintenance. We explored the impact of BTZ maintenance on incidence and severity of chronic GVHD using the 2014 NIH criteria. At 2 years, incidences of overall (61.2% versus 83.6%; P = .001), and moderate/severe chronic GVHD (44.5% versus 77.0%; P = .001) were significantly lower in BTZ recipients who had less mouth (43% versus 67%; P = .018) and eyes (9% versus 41%; P = .001) involvement at initial diagnosis. We report a lower use of systemic steroids (45.1% versus 76.4%; P < .001), mycophenolate mofetil (15.5% versus 28.2%; P = .031) and tacrolimus (34.5% versus 70.6%; P < .001) in BTZ recipients. Probability of being alive and off systemic immunosuppressants at 3 years was 77% in BTZ recipients and 56% in controls (P = .046). To date, there is no difference in survival between both groups. In summary, BTZ maintenance improved incidence and severity of chronic GVHD and should be considered as a valid option in myeloma patients receiving upfront tandem auto-allo HCT.


Asunto(s)
Síndrome de Bronquiolitis Obliterante , Enfermedad Injerto contra Huésped , Mieloma Múltiple , Humanos , Mieloma Múltiple/epidemiología , Mieloma Múltiple/terapia , Mieloma Múltiple/complicaciones , Bortezomib/uso terapéutico , Incidencia , Enfermedad Injerto contra Huésped/epidemiología , Enfermedad Injerto contra Huésped/prevención & control , Estudios Retrospectivos , Recurrencia Local de Neoplasia/complicaciones , Trasplante Homólogo/efectos adversos
13.
Curr Oncol ; 29(8): 5955-5962, 2022 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-36005208

RESUMEN

The purpose of this retrospective study was to study the correlation between donor age (DA) and non-relapse mortality (NRM) and relapse incidence (RI) among patients treated with allogeneic hematopoietic cell transplantation (aHCT) for acute myeloid leukemia (AML) or myelodysplastic syndrome (MDS) in a single Canadian center. Data from 125 consecutive patients transplanted with a matched related or unrelated donor between 2015 and 2020 were analyzed using multivariable models. After a median follow-up of 2.8 years, the cumulative incidences of NRM and relapse were 19% and 35% at 5 years. Despite being independently associated with NRM and relapse-free survival (RFS), DA was not associated with RI. The independent determinants of NRM in addition to DA were patient age and hematopoietic cell transplantation comorbidity index (HCT-CI), independently of donor kinship. The effect of DA on NRM was found to be significantly increased over the age of 50 years. DA was not associated with incidence of acute graft-versus-host disease (aGVHD) but showed an association with the occurrence of chronic GVHD (cGVHD). In conclusion, younger donors should be favored to limit NRM and increase RFS in HLA-matched aHCT. The etiological mechanisms behind the association of DA with higher NRM remain to be elucidated.


Asunto(s)
Enfermedad Injerto contra Huésped , Trasplante de Células Madre Hematopoyéticas , Leucemia Mieloide Aguda , Síndromes Mielodisplásicos , Canadá/epidemiología , Enfermedad Injerto contra Huésped/etiología , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Humanos , Leucemia Mieloide Aguda/complicaciones , Leucemia Mieloide Aguda/terapia , Persona de Mediana Edad , Síndromes Mielodisplásicos/terapia , Recurrencia , Estudios Retrospectivos , Trasplante Homólogo/efectos adversos
14.
Blood Adv ; 6(16): 4793-4806, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35797243

RESUMEN

High-mobility group AT-hook 2 (HMGA2) is a nonhistone chromatin-binding protein that is normally expressed in stem cells of various tissues and aberrantly detected in several tumor types. We recently observed that one-fourth of human acute myeloid leukemia (AML) specimens express HMGA2, which associates with a very poor prognosis. We present results indicating that HMGA2+ AMLs share a distinct transcriptional signature representing an immature phenotype. Using single-cell analyses, we showed that HMGA2 is expressed in CD34+ subsets of stem cells and early progenitors, whether normal or derived from AML specimens. Of interest, we found that one of the strongest gene expression signatures associated with HMGA2 in AML is the upregulation of G2/M checkpoint genes. Whole-genome CRISPR/Cas9 screening in HMGA2 overexpressing cells further revealed a synthetic lethal interaction with several G2/M checkpoint genes. Accordingly, small molecules that target G2/M proteins were preferentially active in vitro and in vivo on HMGA2+ AML specimens. Together, our findings suggest that HMGA2 is a key functional determinant in AML and is associated with stem cell features, G2/M status, and related drug sensitivity.


Asunto(s)
Leucemia Mieloide Aguda , Antígenos CD34 , Puntos de Control del Ciclo Celular , Humanos , Leucemia Mieloide Aguda/patología , Regulación hacia Arriba
16.
Nat Cell Biol ; 24(7): 1038-1048, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35725769

RESUMEN

Bone marrow haematopoietic stem cells (HSCs) are vital for lifelong maintenance of healthy haematopoiesis. In inbred mice housed in gnotobiotic facilities, the top of the haematopoietic hierarchy is occupied by dormant HSCs, which reversibly exit quiescence during stress. Whether HSC dormancy exists in humans remains debatable. Here, using single-cell RNA sequencing, we show a continuous landscape of highly purified human bone marrow HSCs displaying varying degrees of dormancy. We identify the orphan receptor GPRC5C, which enriches for dormant human HSCs. GPRC5C is also essential for HSC function, as demonstrated by genetic loss- and gain-of-function analyses. Through structural modelling and biochemical assays, we show that hyaluronic acid, a bone marrow extracellular matrix component, preserves dormancy through GPRC5C. We identify the hyaluronic acid-GPRC5C signalling axis controlling the state of dormancy in mouse and human HSCs.


Asunto(s)
Células Madre Hematopoyéticas , Ácido Hialurónico , Animales , Médula Ósea , Hematopoyesis , Humanos , Ratones , Transducción de Señal
17.
Nat Commun ; 13(1): 2801, 2022 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-35589701

RESUMEN

T-cell acute lymphoblastic leukemia (T-ALL) is commonly driven by activating mutations in NOTCH1 that facilitate glutamine oxidation. Here we identify oxidative phosphorylation (OxPhos) as a critical pathway for leukemia cell survival and demonstrate a direct relationship between NOTCH1, elevated OxPhos gene expression, and acquired chemoresistance in pre-leukemic and leukemic models. Disrupting OxPhos with IACS-010759, an inhibitor of mitochondrial complex I, causes potent growth inhibition through induction of metabolic shut-down and redox imbalance in NOTCH1-mutated and less so in NOTCH1-wt T-ALL cells. Mechanistically, inhibition of OxPhos induces a metabolic reprogramming into glutaminolysis. We show that pharmacological blockade of OxPhos combined with inducible knock-down of glutaminase, the key glutamine enzyme, confers synthetic lethality in mice harboring NOTCH1-mutated T-ALL. We leverage on this synthetic lethal interaction to demonstrate that IACS-010759 in combination with chemotherapy containing L-asparaginase, an enzyme that uncovers the glutamine dependency of leukemic cells, causes reduced glutaminolysis and profound tumor reduction in pre-clinical models of human T-ALL. In summary, this metabolic dependency of T-ALL on OxPhos provides a rational therapeutic target.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células T Precursoras , Animales , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Glutamina/metabolismo , Ratones , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Receptor Notch1/metabolismo , Linfocitos T/metabolismo
18.
EMBO Mol Med ; 14(4): e14990, 2022 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-35253392

RESUMEN

The heterogeneous response of acute myeloid leukemia (AML) to current anti-leukemic therapies is only partially explained by mutational heterogeneity. We previously identified GPR56 as a surface marker associated with poor outcome across genetic groups, which characterizes two leukemia stem cell (LSC)-enriched compartments with different self-renewal capacities. How these compartments self-renew remained unclear. Here, we show that GPR56+ LSC compartments are promoted in a complex network involving epithelial-to-mesenchymal transition (EMT) regulators besides Rho, Wnt, and Hedgehog (Hh) signaling. Unexpectedly, Wnt pathway inhibition increased the more immature, slowly cycling GPR56+ CD34+ fraction and Hh/EMT gene expression, while Wnt activation caused opposite effects. Our data suggest that the crucial role of GPR56 lies in its ability to co-activate these opposing signals, thus ensuring the constant supply of both LSC subsets. We show that CDK7 inhibitors suppress both LSC-enriched subsets in vivo and synergize with the Bcl-2 inhibitor venetoclax. Our data establish reciprocal transition between LSC compartments as a novel concept underlying the poor outcome in GPR56high AML and propose combined CDK7 and Bcl-2 inhibition as LSC-directed therapy in this disease.


Asunto(s)
Compuestos Bicíclicos Heterocíclicos con Puentes , Quinasas Ciclina-Dependientes , Leucemia Mieloide Aguda , Inhibidores de Proteínas Quinasas , Sulfonamidas , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Proteína Quinasa CDC2/antagonistas & inhibidores , Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Sinergismo Farmacológico , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/uso terapéutico , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/uso terapéutico , Sulfonamidas/farmacología , Quinasa Activadora de Quinasas Ciclina-Dependientes
19.
Transplant Cell Ther ; 28(7): 410.e1-410.e5, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35311667

RESUMEN

Cord blood (CB) stem cell transplantation offers a greater tolerance to HLA mismatches compared to adult-derived stem cell transplants (i.e., bone marrow or peripheral blood stem cells). Indeed, 4/6 or 5/8 HLA-matched CB transplantations are regularly performed for patients lacking a matched unrelated donor. Unfortunately, most banked CB units contain a stem cell dose that is too small to treat adult patients, resulting in only 4% to 5% of available CB units offering an adequate cell dose for prompt engraftment for adult patients. Ex vivo stem cell expansion appears to be an attractive strategy to circumvent this cell dose issue, while also enabling the selection of better HLA-matched CB units. In this study, we retrospectively performed HLA matching simulations to assess how the minimal cell content requirements associated with UM171 CB expansion may improve usability of existing CB unit inventories and donor availability for patients of different races and ethnicities. We analyzed a dataset of 58,971 adults for whom a donor search was initiated through the National Marrow Donor Program Be The Match registry against 142,942 CB units from major U.S. public CB banks listed on the Be The Match registry. Our results show that by enabling selection of smaller CB units, UM171-expanded CB transplantation increases donor availability from 72% to 84% for all patients compared to single unmanipulated CB transplantation. Furthermore, the low cell dose criteria for UM171-expanded CB also increases donor availability compared to double CB transplantation, while enabling better HLA matching between donor and recipient. UM171 expanded CB appears particularly beneficial for racial and ethnic minority patients as CB availability increases from 53% to 78% for African Americans, from 66% to 85% for Hispanics, and from 68% to 84% for Asians and Pacific Islanders, compared to single unmanipulated CB transplantation. In addition, UM171 expansion dramatically improves usability of CB units currently in inventories, as only 4.3% and 0.6% of banked CBs have sufficient cell doses for a 70 kg and 100 kg patient, respectively. UM171 raises this proportion to 53.8% and 20.2%, respectively, making CB banks potentially more cost effective. In conclusion, UM171 expansion allows the use of smaller CB units while also improving access to transplantation for racial and ethnic minorities.


Asunto(s)
Trasplante de Células Madre de Sangre del Cordón Umbilical , Sangre Fetal , Adulto , Etnicidad , Humanos , Grupos Minoritarios , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA