RESUMEN
In chronic migraine with medication overuse (CM-MOH), sensitization of visual cortices is reflected by (i) increased amplitude of stimulus-evoked responses and (ii) habituation deficit during repetitive stimulation. Both abnormalities might be mitigated by inhibitory transcranial neurostimulation. Here, we tested an inhibitory quadripulse repetitive transcranial magnetic stimulation (rTMS-QPI) protocol to decrease durably visual cortex excitability in healthy subjects (HS) and explored its therapeutic potential in CM-MOH patients. Pattern-reversal visual evoked potentials (VEP) were used as biomarkers of effect and recorded before (T1), immediately after (T2), and 3 h after stimulation (T3). In HS, rTMS-QPI durably decreased the VEP 1st block amplitude (p < 0.05) and its habituation (p < 0.05). These changes were more pronounced for the P1N2 component that was modified already at T2 up to T3, while for N1P1 they were significant only at T3. An excitatory stimulation protocol (rTMS-QPE) tended to have an opposite effect, restricted to P1N2. In 12 CM-MOH patients, during a four-week treatment (2 sessions/week), rTMS-QPI significantly reduced monthly headache days (p < 0.01). In patients reversing from CM-MOH to episodic migraine (n = 6), VEP habituation significantly improved after treatment (p = 0.005). rTMS-QPI durably decreases visual cortex responsivity in healthy subjects. In a proof-of-concept study of CM-MOH patients, rTMS-QPI also has beneficial clinical and electrophysiological effects, but sham-controlled trials are needed.
RESUMEN
BACKGROUND: Visually induced analgesia (VIA) defines a phenomenon in which viewing one's own body part during its painful stimulation decreases the perception of pain. VIA occurs during direct vision of the stimulated body part and also when seeing it reflected in a mirror. To the best of our knowledge, VIA has not been studied in the trigeminal area, where it could be relevant for the control of headache. SUBJECTS AND METHODS: We used heat stimuli (53°C) to induce pain in the right forehead or wrist in 11 healthy subjects (HSs) and 14 female migraine without aura (MO) patients between attacks. The subjects rated pain on a visual analog scale (VAS) and underwent contact heat-evoked potential (CHEP) recordings (five sequential blocks of four responses) with or without observation of their face/wrist in a mirror. RESULTS: During wrist stimulation, amplitude of the first block of P1-P2 components of CHEPs decreased compared to that in the control recording when HSs were seeing their wrist reflected in the mirror (p = 0.036; Z = 2.08); however, this was not found in MO patients. In the latter, the VAS pain score increased viewing the reflected wrist (p = 0.049; Z = 1.96). Seeing their forehead reflected in the mirror induced a significant increase in N2 latency of CHEPs in HSs, as well as an amplitude reduction in the first block of P1-P2 components of CHEPs both in HSs (p = 0.007; Z = 2.69) and MO patients (p = 0.035; Z = 2.10). Visualizing the body part did not modify habituation of CHEP amplitudes over the five blocks of averaged responses, neither during wrist nor during forehead stimulation. CONCLUSION: This study adds to the available knowledge on VIA and demonstrates this phenomenon for painful stimuli in the trigeminal area, as long as CHEPs are used as indices of central pain processing. In migraine patients during interictal periods, VIA assessed with CHEPs is within normal limits in the face but absent at the wrist, possibly reflecting dysfunctioning of extracephalic pain control.
RESUMEN
BACKGROUND: Preventive pharmacotherapy for migraine is not satisfactory because of the low efficacy/tolerability ratio of many available drugs. Novel and more efficient preventive strategies are therefore warranted. Abnormal excitability of cortical areas appears to play a pivotal role in migraine pathophysiology. Transcranial direct current stimulation (tDCS) is a non-invasive and safe technique that is able to durably modulate the activity of the underlying cerebral cortex, and is being tested in various medical indications. The results of small open studies using tDCS in migraine prophylaxis are conflicting, possibly because the optimal stimulation settings and the brain targets were not well chosen. We have previously shown that the cerebral cortex, especially the visual cortex, is hyperresponsive in migraine patients between attacks and provided evidence from evoked potential studies that this is due to a decreased cortical preactivation level. If one accepts this concept, anodal tDCS over the visual cortex may have therapeutic potentials in migraine prevention, as it is able to increase neuronal firing. OBJECTIVE: To study the effects of anodal tDCS on visual cortex activity in healthy volunteers (HV) and episodic migraine without aura patients (MoA), and its potentials for migraine prevention. METHODS: We recorded pattern-reversal visual evoked potentials (VEP) before and after a 15-min session of anodal tDCS over the visual cortex in 11 HV and 13 MoA interictally. Then 10 MoA patients reporting at least 4 attacks/month subsequently participated in a therapeutic study, and received 2 similar sessions of tDCS per week for 8 weeks as migraine preventive therapy. RESULTS: In HV as well as in MoA, anodal tDCS transiently increased habituation of the VEP N1P1 component. VEP amplitudes were not modified by tDCS. Preventive treatment with anodal tDCS turned out to be beneficial in MoA: migraine attack frequency, migraine days, attack duration and acute medication intake significantly decreased during the treatment period compared to pre-treatment baseline (all p < 0.05), and this benefit persisted on average 4.8 weeks after the end of tDCS. CONCLUSIONS: Anodal tDCS over the visual cortex is thus able to increase habituation to repetitive visual stimuli in healthy volunteers and in episodic migraineurs, who on average lack habituation interictally. Moreover, 2 weekly sessions of anodal tDCS had a significant preventive anti- migraine effect, proofing the concept that the low preactivation level of the visual cortex in migraine patients can be corrected by an activating neurostimulation. The therapeutic results indicate that a larger sham-controlled trial using the same tDCS protocol is worthwhile.
Asunto(s)
Terapia por Estimulación Eléctrica/métodos , Trastornos Migrañosos/fisiopatología , Trastornos Migrañosos/terapia , Corteza Visual/fisiopatología , Adulto , Potenciales Evocados Visuales/fisiología , Femenino , Habituación Psicofisiológica/fisiología , Humanos , MasculinoRESUMEN
Hyperventilation is often associated with stress, an established trigger factor for migraine. Between attacks, migraine is associated with a deficit in habituation to visual-evoked potentials (VEP) that worsens just before the attack. Hyperventilation slows electroencephalographic (EEG) activity and decreases the functional response in the occipital cortex during visual stimulation. The neural mechanisms underlying deficient-evoked potential habituation in migraineurs remain unclear. To find out whether hyperventilation alters VEP habituation, we recorded VEPs before and after experimentally induced hyperventilation lasting 3 min in 18 healthy subjects and 18 migraine patients between attacks. We measured VEP P100 amplitudes in six sequential blocks of 100 sweeps and habituation as the change in amplitude over the six blocks. In healthy subjects, hyperventilation decreased VEP amplitude in block 1 and abolished the normal VEP habituation. In migraine patients, hyperventilation further decreased the already low block 1 amplitude and worsened the interictal habituation deficit. Hyperventilation worsens the habituation deficit in migraineurs possibly by increasing dysrhythmia in the brainstem-thalamo-cortical network.
Asunto(s)
Potenciales Evocados Visuales/fisiología , Habituación Psicofisiológica/fisiología , Hiperventilación/complicaciones , Trastornos Migrañosos/etiología , Estrés Psicológico/complicaciones , Corteza Visual/fisiopatología , Adulto , Femenino , Humanos , Hiperventilación/fisiopatología , Masculino , Trastornos Migrañosos/fisiopatología , Estrés Psicológico/fisiopatología , Corteza Visual/metabolismoRESUMEN
BACKGROUND: Medication-overuse headache (MOH) is a frequent, disabling disorder. Despite a controversial pathophysiology convincing evidence attributes a pivotal role to central sensitization. Most patients with MOH initially have episodic migraine without aura (MOA) characterized interictally by an absent amplitude decrease in cortical evoked potentials to repetitive stimuli (habituation deficit), despite a normal initial amplitude (lack of sensitization). Whether central sensitization alters this electrophysiological profile is unknown. We therefore sought differences in somatosensory evoked potential (SEP) sensitization and habituation in patients with MOH and episodic MOA. METHODS: We recorded median-nerve SEPs (3 blocks of 100 sweeps) in 29 patients with MOH, 64 with MOA and 42 controls. Episodic migraineurs were studied during and between attacks. We measured N20-P25 amplitudes from 3 blocks of 100 sweeps, and assessed sensitization from block 1 amplitude, and habituation from amplitude changes between the 3 sequential blocks. RESULTS: In episodic migraineurs, interictal SEP amplitudes were normal in block 1, but thereafter failed to habituate. Ictal SEP amplitudes increased in block 1, then habituated normally. Patients with MOH had larger-amplitude block 1 SEPs than controls, and also lacked SEP habituation. SEP amplitudes were smaller in triptan overusers than in patients overusing nonsteroidal anti-inflammatory drugs (NSAIDs) or both medications combined, lowest in patients with the longest migraine history, and highest in those with the longest-lasting headache chronification. CONCLUSIONS: In patients with MOH, especially those overusing NSAIDs, the somatosensory cortex becomes increasingly sensitized. Sensory sensitization might add to the behavioral sensitization that favors compulsive drug intake, and may reflect drug-induced changes in central serotoninergic transmission.