RESUMEN
Subarachnoid haemorrhage (SAH) can trigger a range of poorly understood cerebrovascular responses that may play a role in delayed cerebral ischemia. The brain pulse monitor is a novel non-invasive device that detects a brain photoplethysmography signal that provides information on intracranial pressure (ICP), compliance, blood flow and tissue oxygen saturation. We monitored the cerebrovascular responses in a patient with Lundberg B waves following a SAH. The patient presented with a Fischer grade 4 SAH that required urgent left posterior communicating artery aneurysm coiling and ventricular drain insertion. On hospital day 4 oscillations or spikes on the invasive ICP were noted, consistent with Lundberg B waves. Brain pulse monitoring demonstrated concurrent pulse waveform features consistent with reduced brain compliance and raised ICP over both brain hemispheres. Oxygen levels also demonstrated slow oscillations correlated with the ICP spikes. Brief infrequent episodes of reduced and absent brain pulses were also noted over the right hemisphere. Our findings suggest that the brain pulse monitor holds promise for early detection of delayed cerebral ischemia and could offer insights into the vascular mechanisms at play.
RESUMEN
Background: Intracranial pressure (ICP) monitoring requires placing a hole in the skull through which an invasive pressure monitor is inserted into the brain. This approach has risks for the patient and is expensive. We have developed a non-invasive brain pulse monitor that uses red light to detect a photoplethysmographic (PPG) signal arising from the blood vessels on the brain's cortical surface. The brain PPG and the invasive ICP waveform share morphological features which may allow measurement of the intracranial pressure. Methods: We enrolled critically ill patients with an acute brain injury with invasive ICP monitoring to assess the new monitor. A total of 24 simultaneous invasive ICP and brain pulse monitor PPG measurements were undertaken in 12 patients over a range of ICP levels. Results: The waveform morphologies were similar for the invasive ICP and brain pulse monitor PPG approach. Both methods demonstrated a progressive increase in the amplitude of P2 relative to P1 with increasing ICP levels. An automated algorithm was developed to assess the PPG morphological features in relation to the ICP level. A correlation was demonstrated between the brain pulse waveform morphology and ICP levels, R2=0.66, P < 0.001. Conclusion: The brain pulse monitor's PPG waveform demonstrated morphological features were similar to the invasive ICP waveform over a range of ICP levels, these features may provide a method to measure ICP levels. Trial Registration: ACTRN12620000828921.