Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
2.
Nat Ecol Evol ; 7(8): 1287-1301, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37429903

RESUMEN

Numerous reports have documented the occurrence of same-sex sociosexual behaviour (SSB) across animal species. However, the distribution of the behaviour within a species needs to be studied to test hypotheses describing its evolution and maintenance, in particular whether the behaviour is heritable and can therefore evolve by natural selection. Here we collected detailed observations across 3 yr of social and mounting behaviour of 236 male semi-wild rhesus macaques, which we combined with a pedigree dating back to 1938, to show that SSB is both repeatable (19.35%) and heritable (6.4%). Demographic factors (age and group structure) explained SSB variation only marginally. Furthermore, we found a positive genetic correlation between same-sex mounter and mountee activities, indicating a common basis to different forms of SSB. Finally, we found no evidence of fitness costs to SSB, but show instead that the behaviour mediated coalitionary partnerships that have been linked to improved reproductive success. Together, our results demonstrate that SSB is frequent in rhesus macaques, can evolve, and is not costly, indicating that SSB may be a common feature of primate reproductive ecology.


Asunto(s)
Reproducción , Conducta Sexual Animal , Animales , Masculino , Macaca mulatta/genética , Selección Genética
3.
Nat Commun ; 14(1): 3322, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37369644

RESUMEN

There has been limited characterisation of bat-borne coronaviruses in Europe. Here, we screened for coronaviruses in 48 faecal samples from 16 of the 17 bat species breeding in the UK, collected through a bat rehabilitation and conservationist network. We recovered nine complete genomes, including two novel coronavirus species, across six bat species: four alphacoronaviruses, a MERS-related betacoronavirus, and four closely related sarbecoviruses. We demonstrate that at least one of these sarbecoviruses can bind and use the human ACE2 receptor for infecting human cells, albeit suboptimally. Additionally, the spike proteins of these sarbecoviruses possess an R-A-K-Q motif, which lies only one nucleotide mutation away from a furin cleavage site (FCS) that enhances infectivity in other coronaviruses, including SARS-CoV-2. However, mutating this motif to an FCS does not enable spike cleavage. Overall, while UK sarbecoviruses would require further molecular adaptations to infect humans, their zoonotic risk warrants closer surveillance.


Asunto(s)
COVID-19 , Quirópteros , Animales , Humanos , COVID-19/genética , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Genómica , Reino Unido , Filogenia , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo
4.
BMJ Open Respir Res ; 10(1)2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37202121

RESUMEN

BACKGROUND: Spread of SARS-CoV2 by aerosol is considered an important mode of transmission over distances >2 m, particularly indoors. OBJECTIVES: We determined whether SARS-CoV2 could be detected in the air of enclosed/semi-enclosed public spaces. METHODS AND ANALYSIS: Between March 2021 and December 2021 during the easing of COVID-19 pandemic restrictions after a period of lockdown, we used total suspended and size-segregated particulate matter (PM) samplers for the detection of SARS-CoV2 in hospitals wards and waiting areas, on public transport, in a university campus and in a primary school in West London. RESULTS: We collected 207 samples, of which 20 (9.7%) were positive for SARS-CoV2 using quantitative PCR. Positive samples were collected from hospital patient waiting areas, from hospital wards treating patients with COVID-19 using stationary samplers and from train carriages in London underground using personal samplers. Mean virus concentrations varied between 429 500 copies/m3 in the hospital emergency waiting area and the more frequent 164 000 copies/m3 found in other areas. There were more frequent positive samples from PM samplers in the PM2.5 fractions compared with PM10 and PM1. Culture on Vero cells of all collected samples gave negative results. CONCLUSION: During a period of partial opening during the COVID-19 pandemic in London, we detected SARS-CoV2 RNA in the air of hospital waiting areas and wards and of London Underground train carriage. More research is needed to determine the transmission potential of SARS-CoV2 detected in the air.


Asunto(s)
COVID-19 , Chlorocebus aethiops , Animales , Humanos , COVID-19/epidemiología , ARN Viral , SARS-CoV-2 , Londres/epidemiología , Pandemias , Células Vero , Control de Enfermedades Transmisibles , Aerosoles y Gotitas Respiratorias , Material Particulado/análisis
5.
Proc Natl Acad Sci U S A ; 120(10): e2211668120, 2023 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-36862690

RESUMEN

Sexual conflict can arise when males evolve traits that improve their mating success but in doing so harm females. By reducing female fitness, male harm can diminish offspring production in a population and even drive extinction. Current theory on harm is based on the assumption that an individual's phenotype is solely determined by its genotype. But the expression of most sexually selected traits is also influenced by variation in biological condition (condition-dependent expression), such that individuals in better condition can express more extreme phenotypes. Here, we developed demographically explicit models of sexual conflict evolution where individuals vary in their condition. Because condition-dependent expression readily evolves for traits underlying sexual conflict, we show that conflict is more intense in populations where individuals are in better condition. Such intensified conflict reduces mean fitness and can thus generate a negative association between condition and population size. The impact of condition on demography is especially likely to be detrimental when the genetic basis of condition coevolves with sexual conflict. This occurs because sexual selection favors alleles that improve condition (the so-called good genes effect), producing feedback between condition and sexual conflict that drives the evolution of intense male harm. Our results indicate that in presence of male harm, the good genes effect in fact easily becomes detrimental to populations.


Asunto(s)
Comunicación Celular , Reproducción , Femenino , Masculino , Animales , Alelos , Genotipo , Densidad de Población
6.
New Phytol ; 238(3): 1305-1317, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36444527

RESUMEN

The architecture of root systems is an important driver of plant fitness, competition and ecosystem processes. However, the methodological difficulty of mapping roots hampers the study of these processes. Existing approaches to match individual plants to belowground samples are low throughput and species specific. Here, we developed a scalable sequencing-based method to map the root systems of individual trees across multiple species. We successfully applied it to a tropical dry forest community in the Brazilian Caatinga containing 14 species. We sequenced all 42 individual shrubs and trees in a 14 × 14 m plot using double-digest restriction site-associated sequencing (ddRADseq). We identified species-specific markers and individual-specific haplotypes from the data. We matched these markers to the ddRADseq data from 100 mixed root samples from across the centre (10 × 10 m) of the plot at four different depths using a newly developed R package. We identified individual root samples for all species and all but one individual. There was a strong significant correlation between belowground and aboveground size measurements, and we also detected significant species-level root-depth preference for two species. The method is more scalable and less labour intensive than the current techniques and is broadly applicable to ecology, forestry and agricultural biology.


Asunto(s)
Ecosistema , Árboles , Árboles/genética , Genotipo , Bosques , Agricultura Forestal , Plantas , Raíces de Plantas
7.
Conserv Sci Pract ; 4(7): e12707, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35935171

RESUMEN

Several studies have suggested SARS-CoV-2 originated from a viral ancestor in bats, but whether transmission occurred directly or via an intermediary host to humans remains unknown. Concerns of spillover of SARS-CoV-2 into wild bat populations are hindering bat rehabilitation and conservation efforts in the United Kingdom and elsewhere. Current protocols state that animals cared for by individuals who have tested positive for SARS-CoV-2 cannot be released into the wild and must be isolated to reduce the risk of transmission to wild populations. Here, we propose a reverse transcription-quantitative polymerase chain reaction (RT-qPCR)-based protocol for detection of SARS-CoV-2 in bats, using fecal sampling. Bats from the United Kingdom were tested following suspected exposure to SARS-CoV-2 and tested negative for the virus. With current UK and international legislation, the identification of SARS-CoV-2 infection in wild animals is becoming increasingly important, and protocols such as the one developed here will help improve understanding and mitigation of SARS-CoV-2 in the future.

8.
Front Nutr ; 8: 792941, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34926558

RESUMEN

Background: Undernutrition is a prevalent, serious, and growing concern, particularly in developing countries. Entomophagy-the human consumption of edible insects, is a historical and culturally established practice in many regions. Increasing consumption of nutritious insect meal is a possible combative strategy and can promote sustainable food security. However, the nutritional literature frequently lacks consensus, with interspecific differences in the nutrient content of edible insects generally being poorly resolved. Aims and methods: Here we present full proximate and fatty acid profiles for five edible insect species of socio-economic importance in West Africa: Hermetia illucens (black soldier fly), Musca domestica (house fly), Rhynchophorus phoenicis (African palm weevil), Cirina butyrospermi (shea tree caterpillar), and Macrotermes bellicosus (African termite). These original profiles, which can be used in future research, are combined with literature-derived proximate, fatty acid, and amino acid profiles to analyse interspecific differences in nutrient content. Results: Interspecific differences in ash (minerals), crude protein, and crude fat contents were substantial. Highest ash content was found in H. illucens and M. domestica (~10 and 7.5% of dry matter, respectively), highest crude protein was found in C. butyrospermi and M. domestica (~60% of dry matter), whilst highest crude fat was found in R. phoenicis (~55% of dry matter). The fatty acid profile of H. illucens was differentiated from the other four species, forming its own cluster in a principal component analysis characterized by high saturated fatty acid content. Cirina butyrospermi had by far the highest poly-unsaturated fatty acid content at around 35% of its total fatty acids, with α-linolenic acid particularly represented. Amino acid analyses revealed that all five species sufficiently met human essential amino acid requirements, although C. butyrospermi was slightly limited in leucine and methionine content. Discussion: The nutritional profiles of these five edible insect species compare favorably to beef and can meet human requirements, promoting entomophagy's utility in combatting undernutrition. In particular, C. butyrospermi may provide a source of essential poly-unsaturated fatty acids, bringing many health benefits. This, along with its high protein content, indicates that this species is worthy of more attention in the nutritional literature, which has thus-far been lacking.

9.
Biol Lett ; 17(11): 20210463, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34813721

RESUMEN

Humans often mate with those resembling themselves, a phenomenon described as positive assortative mating (PAM). The causes of this attract broad interest, but there is little agreement on the topic. This may be because empirical studies and reviews sometimes focus on just a few explanations, often based on disciplinary conventions. This review presents an interdisciplinary conceptual framework on the causes of PAM in humans, drawing on human and non-human biology, the social sciences, and the humanities. Viewing causality holistically, we first discuss the proximate causes (i.e. the 'how') of PAM, considering three mechanisms: stratification, convergence and mate choice. We also outline methods to control for confounders when studying mate choice. We then discuss ultimate explanations (i.e. 'the why') for PAM, including adaptive and non-adaptive processes. We conclude by suggesting a focus on interdisciplinarity in future research.


Asunto(s)
Preferencia en el Apareamiento Animal , Reproducción , Animales
10.
Am J Bot ; 108(7): 1201-1216, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34180046

RESUMEN

PREMISE: Both universal and family-specific targeted sequencing probe kits are becoming widely used for reconstruction of phylogenetic relationships in angiosperms. Within the pantropical Ochnaceae, we show that with careful data filtering, universal kits are equally as capable in resolving intergeneric relationships as custom probe kits. Furthermore, we show the strength in combining data from both kits to mitigate bias and provide a more robust result to resolve evolutionary relationships. METHODS: We sampled 23 Ochnaceae genera and used targeted sequencing with two probe kits, the universal Angiosperms353 kit and a family-specific kit. We used maximum likelihood inference with a concatenated matrix of loci and multispecies-coalescence approaches to infer relationships in the family. We explored phylogenetic informativeness and the impact of missing data on resolution and tree support. RESULTS: For the Angiosperms353 data set, the concatenation approach provided results more congruent with those of the Ochnaceae-specific data set. Filtering missing data was most impactful on the Angiosperms353 data set, with a relaxed threshold being the optimum scenario. The Ochnaceae-specific data set resolved consistent topologies using both inference methods, and no major improvements were obtained after data filtering. Merging of data obtained with the two kits resulted in a well-supported phylogenetic tree. CONCLUSIONS: The Angiosperms353 data set improved upon data filtering, and missing data played an important role in phylogenetic reconstruction. The Angiosperms353 data set resolved the phylogenetic backbone of Ochnaceae as equally well as the family specific data set. All analyses indicated that both Sauvagesia L. and Campylospermum Tiegh. as currently circumscribed are polyphyletic and require revised delimitation.


Asunto(s)
Magnoliopsida , Ochnaceae , Evolución Biológica , Magnoliopsida/genética , Filogenia , Análisis de Secuencia de ADN
11.
Ecol Evol ; 11(9): 4803-4815, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33976849

RESUMEN

Decades of environmental DNA (eDNA) method application, spanning a wide variety of taxa and habitats, has advanced our understanding of eDNA and underlined its value as a tool for conservation practitioners. The general consensus is that eDNA methods are more accurate and cost-effective than traditional survey methods. However, they are formally approved for just a few species globally (e.g., Bighead Carp, Silver Carp, Great Crested Newt). We conducted a meta-analysis of studies that directly compare eDNA with traditional surveys to evaluate the assertion that eDNA methods are consistently "better."Environmental DNA publications for multiple species or single macro-organism detection were identified using the Web of Science, by searching "eDNA" and "environmental DNA" across papers published between 1970 and 2020. The methods used, focal taxa, habitats surveyed, and quantitative and categorical results were collated and analyzed to determine whether and under what circumstances eDNA outperforms traditional surveys.Results show that eDNA methods are cheaper, more sensitive, and detect more species than traditional methods. This is, however, taxa-dependent, with amphibians having the highest potential for detection by eDNA survey. Perhaps most strikingly, of the 535 papers reviewed just 49 quantified the probability of detection for both eDNA and traditional survey methods and studies were three times more likely to give qualitative statements of performance. Synthesis and applications: The results of this meta-analysis demonstrate that where there is a direct comparison, eDNA surveys of macro-organisms are more accurate and efficient than traditional surveys. This conclusion, however, is based on just a fraction of available eDNA papers as most do not offer this granularity. We recommend that conclusions are substantiated with comparable and quantitative data. Where a direct comparison has not been made, we caution against the use of qualitative statements about relative performance. This consistency and rigor will simplify how the eDNA research community tracks methods-based advances and will also provide greater clarity for conservation practitioners. To this end suggest reporting standards for eDNA studies.

12.
Am Nat ; 197(5): 543-559, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33908829

RESUMEN

AbstractIntralocus sexual conflict, or sexual antagonism, occurs when alleles have opposing fitness effects in the two sexes. Previous theory suggests that sexual antagonism is a driver of genetic variation by generating balancing selection. However, most of these studies assume that populations are well mixed, neglecting the effects of spatial subdivision. Here, we use mathematical modeling to show that limited dispersal changes evolution at sexually antagonistic autosomal and X-linked loci as a result of inbreeding and sex-specific kin competition. We find that if the sexes disperse at different rates, kin competition within the philopatric sex biases intralocus conflict in favor of the more dispersive sex. Furthermore, kin competition diminishes the strength of balancing selection relative to genetic drift, reducing genetic variation in small subdivided populations. Meanwhile, by decreasing heterozygosity, inbreeding reduces the scope for sexually antagonistic polymorphism due to nonadditive allelic effects, and this occurs to a greater extent on the X chromosome than autosomes. Overall, our results indicate that spatial structure is a relevant factor in predicting where sexually antagonistic alleles might be observed. We suggest that sex-specific dispersal ecology and demography can contribute to interspecific and intragenomic variation in sexual antagonism.


Asunto(s)
Distribución Animal , Variación Genética , Selección Genética , Alelos , Animales , Femenino , Flujo Genético , Masculino , Caracteres Sexuales
13.
14.
BMC Genomics ; 21(1): 642, 2020 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-32942994

RESUMEN

BACKGROUND: The Pacific bluefin tuna (Thunnus orientalis) is a regionally endothermic fish that maintains temperatures in their swimming musculature, eyes, brain and viscera above that of the ambient water. Within their skeletal muscle, a thermal gradient exists, with deep muscles, close to the backbone, operating at elevated temperatures compared to superficial muscles near the skin. Their heart, by contrast, operates at ambient temperature, which in bluefin tunas can range widely. Cardiac function in tunas reduces in cold waters, yet the heart must continue to supply blood for metabolically demanding endothermic tissues. Physiological studies indicate Pacific bluefin tuna have an elevated cardiac capacity and increased cold-tolerance compared to warm-water tuna species, primarily enabled by increased capacity for sarcoplasmic reticulum calcium cycling within the cardiac muscles. RESULTS: Here, we compare tissue-specific gene-expression profiles of different cardiac and skeletal muscle tissues in Pacific bluefin tuna. There was little difference in the overall expression of calcium-cycling and cardiac contraction pathways between atrium and ventricle. However, expression of a key sarcoplasmic reticulum calcium-cycling gene, SERCA2b, which plays a key role maintaining intracellular calcium stores, was higher in atrium than ventricle. Expression of genes involved in aerobic metabolism and cardiac contraction were higher in the ventricle than atrium. The two morphologically distinct tissues that derive the ventricle, spongy and compact myocardium, had near-identical levels of gene expression. More genes had higher expression in the cool, superficial muscle than in the warm, deep muscle in both the aerobic red muscle (slow-twitch) and anaerobic white muscle (fast-twitch), suggesting thermal compensation. CONCLUSIONS: We find evidence of widespread transcriptomic differences between the Pacific tuna ventricle and atrium, with potentially higher rates of calcium cycling in the atrium associated with the higher expression of SERCA2b compared to the ventricle. We find no evidence that genes associated with thermogenesis are upregulated in the deep, warm muscle compared to superficial, cool muscle. Heat generation may be enabled by by the high aerobic capacity of bluefin tuna red muscle.


Asunto(s)
Músculo Esquelético/metabolismo , Miocardio/metabolismo , Transcriptoma , Atún/genética , Animales , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Especificidad de Órganos , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Termogénesis , Atún/metabolismo
15.
Philos Trans R Soc Lond B Biol Sci ; 375(1806): 20190528, 2020 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-32654637

RESUMEN

Speciation, that is, the evolution of reproductive barriers eventually leading to complete isolation, is a crucial process generating biodiversity. Recent work has contributed much to our understanding of how reproductive barriers begin to evolve, and how they are maintained in the face of gene flow. However, little is known about the transition from partial to strong reproductive isolation (RI) and the completion of speciation. We argue that the evolution of strong RI is likely to involve different processes, or new interactions among processes, compared with the evolution of the first reproductive barriers. Transition to strong RI may be brought about by changing external conditions, for example, following secondary contact. However, the increasing levels of RI themselves create opportunities for new barriers to evolve and, and interaction or coupling among barriers. These changing processes may depend on genomic architecture and leave detectable signals in the genome. We outline outstanding questions and suggest more theoretical and empirical work, considering both patterns and processes associated with strong RI, is needed to understand how speciation is completed. This article is part of the theme issue 'Towards the completion of speciation: the evolution of reproductive isolation beyond the first barriers'.


Asunto(s)
Flujo Génico , Especiación Genética , Genoma , Aislamiento Reproductivo
16.
Philos Trans R Soc Lond B Biol Sci ; 375(1806): 20190542, 2020 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-32654651

RESUMEN

Shifts in flowering time have the potential to act as strong prezygotic reproductive barriers in plants. We investigate the role of flowering time divergence in two species of mountain rose (Metrosideros) endemic to Lord Howe Island, Australia, a minute and isolated island in the Tasman Sea. Metrosideros nervulosa and M. sclerocarpa are sister species and have divergent ecological niches on the island but grow sympatrically for much of their range, and likely speciated in situ on the island. We used flowering time and population genomic analyses of population structure and selection, to investigate their evolution, with a particular focus on the role of flowering time in their speciation. Population structure analyses showed the species are highly differentiated and appear to be in the very late stages of speciation. We found flowering times of the species to be significantly displaced, with M. sclerocarpa flowering 53 days later than M. nervulosa. Furthermore, the analyses of selection showed that flowering time genes are under selection between the species. Thus, prezygotic reproductive isolation is mediated by flowering time shifts in the species, and likely evolved under selection, to drive the completion of speciation within a small geographical area. This article is part of the theme issue 'Towards the completion of speciation: the evolution of reproductive isolation beyond the first barriers'.


Asunto(s)
Especiación Genética , Myrtaceae/genética , Aislamiento Reproductivo , Islas , Nueva Gales del Sur , Simpatría
17.
19.
Mitochondrial DNA B Resour ; 5(3): 2080-2082, 2020 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-33457750

RESUMEN

We report the first mitochondrial genome sequences for the gray reef shark, Carcharhinus amblyrhynchos. Two specimens from the British Indian Ocean Territory were sequenced independently using two different next generation sequencing methods, namely short read sequencing on the Illumina HiSeq and long read sequencing on the Oxford Nanopore Technologies' MinION sequencer. The two sequences are 99.9% identical and are 16,705 base pairs (bp) and 16,706 bp in length. The mitogenome contains 22 tRNA genes, two rRNA genes, 13 protein-coding genes and two non-coding regions; the control region and the origin of light-strand replication (OL).

20.
Mitochondrial DNA B Resour ; 5(3): 2085-2086, 2020 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-33457752

RESUMEN

The Chagos archipelago in the British Indian Ocean Territory (BIOT) has been lacking in detailed genetic studies of its chondrichthyan populations. Chondrichthyes in Chagos continue to be endangered through illegal fishing operations, necessitating species distribution and abundance studies to facilitate urgent monitoring and conservation of the species. Here, we present a complete mitochondrial genome of the Silvertip Shark, Carcharhinus albimarginatus sampled in the Chagos archipelago. The mitochondrial genome of C. albimarginatus was 16,706 bp in length and consisted of 13 protein-coding genes, 22 tRNA genes, two rRNA genes, a replication origin and a D-loop region. GC content was at 38.7% and the control region was 1,065 bp in length. We expect that mitogenomes presented here will aid development of molecular assays for species distribution studies. Overall these studies will promote effective conservation of marine ecosystemes in the BIOT.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA