Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 181
Filtrar
1.
Virology ; 594: 110052, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38507920

RESUMEN

SARS-CoV-2 infection causes activation of endothelial cells (ECs), leading to dysmorphology and dysfunction. To study the pathogenesis of endotheliopathy, the activation of ECs in lungs of cynomolgus macaques after SARS-CoV-2 infection and changes in nicotinamide adenine dinucleotide (NAD) metabolism in ECs were investigated, with a focus on the CD38 molecule, which degrades NAD in inflammatory responses after SARS-CoV-2 infection. Activation of ECs was seen from day 3 after SARS-CoV-2 infection in macaques, with increases of intravascular fibrin and NAD metabolism-associated enzymes including CD38. In vitro, upregulation of CD38 mRNA in human ECs was detected after interleukin 6 (IL-6) trans-signaling induction, which was increased in the infection. In the presence of IL-6 trans-signaling stimulation, however, CD38 mRNA silencing induced significant IL-6 mRNA upregulation in ECs and promoted EC apoptosis after stimulation. These results suggest that upregulation of CD38 in patients with COVID-19 has a protective role against IL-6 trans-signaling stimulation induced by SARS-CoV-2 infection.


Asunto(s)
COVID-19 , Humanos , Animales , COVID-19/metabolismo , Células Endoteliales/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , NAD , SARS-CoV-2/metabolismo , Macaca/metabolismo , ARN Mensajero/metabolismo
2.
J Biol Chem ; 299(11): 105325, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37805141

RESUMEN

In multicellular organisms, a variety of lipid-protein particles control the systemic flow of triacylglycerides, cholesterol, and fatty acids between cells in different tissues. The chemical modification by oxidation of these particles can trigger pathological responses, mediated by a group of membrane proteins termed scavenger receptors. The lectin-like oxidized low-density lipoprotein (LOX-1) scavenger receptor binds to oxidized low-density lipoprotein (oxLDL) and mediates both signaling and trafficking outcomes. Here, we identified five synthetic proteins termed Affimers from a phage display library, each capable of binding recombinant LOX-1 extracellular (oxLDL-binding) domain with high specificity. These Affimers, based on a phytocystatin scaffold with loop regions of variable sequence, were able to bind to the plasma membrane of HEK293T cells exclusively when human LOX-1 was expressed. Binding and uptake of fluorescently labeled oxLDL by the LOX-1-expressing cell model was inhibited with subnanomolar potency by all 5 Affimers. ERK1/2 activation, stimulated by oxLDL binding to LOX-1, was also significantly inhibited (p < 0.01) by preincubation with LOX-1-specific Affimers, but these Affimers had no direct agonistic effect. Molecular modeling indicated that the LOX-1-specific Affimers bound predominantly via their variable loop regions to the surface of the LOX-1 lectin-like domain that contains a distinctive arrangement of arginine residues previously implicated in oxLDL binding, involving interactions with both subunits of the native, stable scavenger receptor homodimer. These data provide a new class of synthetic tools to probe and potentially modulate the oxLDL/LOX-1 interaction that plays an important role in vascular disease.


Asunto(s)
Sistema de Señalización de MAP Quinasas , Receptores Depuradores de Clase E , Humanos , Receptores Depuradores de Clase E/genética , Receptores Depuradores de Clase E/química , Receptores Depuradores de Clase E/metabolismo , Células HEK293 , Lipoproteínas LDL/metabolismo , Receptores Depuradores/metabolismo , Lectinas/metabolismo
4.
Hypertension ; 80(10): 2226-2238, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37615097

RESUMEN

BACKGROUND: Preeclampsia is a complex syndrome that includes maternal vascular dysfunction. Syncytiotrophoblast-derived extracellular vesicles from preeclampsia placentas (preeclampsia-STBEVs) were shown to induce endothelial dysfunction, but an endothelial transmembrane mediator is still unexplored. The LOX-1 (lectin-like oxidized low-density lipoprotein receptor-1) is a transmembrane scavenger receptor that can cause endothelial dysfunction, and its expression is increased in the endothelium of preeclampsia women. In this study, we hypothesized that LOX-1 mediates the effects of preeclampsia-STBEVs on endothelial function. METHODS: Preeclampsia-STBEVs were collected by perfusion of placentas from women with preeclampsia and in vitro and ex vivo endothelial cell function were assessed. RESULTS: In human umbilical vein endothelial cells, inhibition of LOX-1 with LOX-1 blocking antibody (TS20) reduced the uptake of preeclampsia-STBEVs (61.3±8.8%). TS20 prevented the activation of ERK (extracellular signal-regulated kinase, a kinase downstream of LOX-1) and reduced the activation of NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells; 21.1±8.0%) and nitrative stress (23.2±10.3%) that was induced by preeclampsia-STBEVs. Vascular function was assessed by wire myography in isolated mesenteric arteries from pregnant rats that were incubated overnight with preeclampsia-STBEVs±TS20. TS20 prevented endothelium-dependent vasodilation impairment induced by preeclampsia-STBEVs. Nitric oxide contribution to the relaxation was reduced by preeclampsia-STBEVs, which was prevented by TS20. Superoxide dismutase or apocynin, an inhibitor of NOX (nicotinamide adenine dinucleotide phosphate oxidase), restored the impaired endothelium-dependent vasodilation in arteries exposed to preeclampsia-STBEVs. CONCLUSIONS: Taken together, our findings demonstrate that LOX-1 mediates the endothelial dysfunction induced by preeclampsia-STBEVs. Our study further expands on the mechanisms that may lead to adverse outcomes in preeclampsia and proposes LOX-1 as a potential target for future interventions.


Asunto(s)
Vesículas Extracelulares , Preeclampsia , Enfermedades Vasculares , Embarazo , Humanos , Femenino , Animales , Ratas , Células Endoteliales , Endotelio , Receptores de LDL Oxidadas , Lectinas
5.
Hypertens Res ; 46(1): 63-74, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36385349

RESUMEN

Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is a key mediator of inflammation and plays an important role in the pathogenesis of atherosclerosis. Conversely, LOX-1 deficiency has been shown to decrease inflammation and atherosclerosis, both of which have been proposed to contribute to abdominal aortic aneurysm (AAA) pathogenesis. However, the role of LOX-1 in AAA pathogenesis remains unknown. Here, we investigated the effects of Olr1 (which encodes LOX-1) deletion on angiotensin II (Ang II)-induced AAA in apolipoprotein E knockout (ApoE KO) mice to determine whether LOX-1 deficiency mitigates AAA development. To accomplish this, we used serial, non-invasive ultrasound assessment, which revealed that the incidence and expansion rate of AAA were similar regardless of Olr1 deletion. However, Olr1 deletion significantly increased severe AAAs, including ruptured AAAs resulting in death. Oil Red O staining of the harvested aortas showed that the extent of atheroma burden localized in aneurysmal lesions did not differ between LOX-1-deficient and control mice, suggesting that Olr1 deletion did not decrease atheroma burden in the aneurysmal wall. Further histopathological analysis revealed that aneurysmal lesions in LOX-1-deficient mice had fewer fibroblasts and myofibroblasts, as well as thinner adventitial collagen, although the degree of elastin fragmentation or disruption was similar between LOX-1-deficient and control mice. An in vitro study confirmed that the proliferation of adventitial fibroblasts collected from LOX-1-deficient mice was significantly attenuated despite Ang II stimulation. In conclusion, Olr1 deletion may not mitigate aneurysm development but rather increases the vulnerability of rupture by suppressing adventitial fibroblast proliferation and collagen synthesis.


Asunto(s)
Aneurisma de la Aorta Abdominal , Aterosclerosis , Placa Aterosclerótica , Animales , Ratones , Angiotensina II/farmacología , Aorta Abdominal/patología , Aneurisma de la Aorta Abdominal/etiología , Aneurisma de la Aorta Abdominal/patología , Aterosclerosis/complicaciones , Colágeno , Modelos Animales de Enfermedad , Inflamación/complicaciones , Ratones Endogámicos C57BL , Receptores Depuradores de Clase E/genética , Ratones Noqueados para ApoE
6.
Cardiovasc Res ; 119(4): 1008-1020, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-36266737

RESUMEN

AIMS: The liver is the major organ shown to remove oxidized low-density lipoprotein (oxLDL) from the circulation. Given increased evidence that thermogenic adipose tissue has anti-effects, we used 123I-labelled oxLDL as a tracer to reveal oxLDL accumulation in the brown adipose tissue (BAT) of mice. We also explored the mechanisms of oxLDL accumulation in BAT. METHODS AND RESULTS: We used high-resolution nanoSPECT/CT to investigate the tissue distribution of 123I-oxLDL and 123I-LDL (control) following intravenous injection into conscious mice. 123I-oxLDL distribution was discovered in BAT at an intensity equivalent to that in the liver, whereas 123I-LDL was detected mostly in the liver. Consistent with the function of BAT related to sympathetic nerve activity, administering anaesthesia in mice almost completely eliminated the accumulation of 123I-oxLDL in BAT, and this effect was reversed by administering ß3-agonist. Furthermore, exposing mice to cold stress at 4°C enhanced 123I-oxLDL accumulation in BAT. Because in 123I-oxLDL, the protein of oxLDL was labelled, we performed additional experiments with DiI-oxLDL in which the lipid phase of oxLDL was fluorescently labelled and observed similar results, suggesting that the whole oxLDL particle was taken up by BAT. To identify the receptor responsible for oxLDL uptake in BAT, we analysed the expression of known oxLDL receptors (e.g. SR-A, CD36, and LOX-1) in cultured brown adipocyte cell line and primary brown adipocytes and found that CD36 was the major receptor expressed. Treatment of cells with CD36 siRNA or CD36 neutralizing antibody significantly inhibited DiI-oxLDL uptake. Finally, CD36 deletion in mice abolished the accumulation of 123I-oxLDL and DiI-oxLDL in BAT, indicating that CD36 is the major receptor for oxLDL in BAT. CONCLUSION: We show novel evidence for the CD36-mediated accumulation of oxLDL in BAT, suggesting that BAT may exert its anti-atherogenic effects by removing atherogenic LDL from the circulation.


Asunto(s)
Tejido Adiposo Pardo , Lipoproteínas LDL , Animales , Ratones , Tejido Adiposo Pardo/metabolismo , Lipoproteínas LDL/metabolismo , Antígenos CD36/metabolismo
7.
JCI Insight ; 7(23)2022 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-36264633

RESUMEN

Identifying host factors that contribute to pneumonia incidence and severity are of utmost importance to guiding the development of more effective therapies. Lectin-like oxidized low-density lipoprotein receptor 1 (LOX-1, encoded by OLR1) is a scavenger receptor known to promote vascular injury and inflammation, but whether and how LOX-1 functions in the lung are unknown. Here, we provide evidence of substantial accumulation of LOX-1 in the lungs of patients with acute respiratory distress syndrome and in mice with pneumonia. Unlike previously described injurious contributions of LOX-1, we found that LOX-1 is uniquely protective in the pulmonary airspaces, limiting proteinaceous edema and inflammation. We also identified alveolar macrophages and recruited neutrophils as 2 prominent sites of LOX-1 expression in the lungs, whereby macrophages are capable of further induction during pneumonia and neutrophils exhibit a rapid, but heterogenous, elevation of LOX-1 in the infected lung. Blockade of LOX-1 led to dysregulated immune signaling in alveolar macrophages, marked by alterations in activation markers and a concomitant elevation of inflammatory gene networks. However, bone marrow chimeras also suggested a prominent role for neutrophils in LOX-1-mediated lung protection, further supported by LOX-1+ neutrophils exhibiting transcriptional changes consistent with reparative processes. Taken together, this work establishes LOX-1 as a tissue-protective factor in the lungs during pneumonia, possibly mediated by its influence on immune signaling in alveolar macrophages and LOX-1+ airspace neutrophils.


Asunto(s)
Lesión Pulmonar , Neumonía , Receptores Depuradores de Clase E , Animales , Ratones , Receptores Depuradores de Clase E/genética
9.
Viruses ; 13(11)2021 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-34834944

RESUMEN

Systemic symptoms have often been observed in patients with coronavirus disease 2019 (COVID-19) in addition to pneumonia, however, the details are still unclear due to the lack of an appropriate animal model. In this study, we investigated and compared blood coagulation abnormalities and tissue damage between male Syrian hamsters of 9 (young) and over 36 (aged) weeks old after intranasal infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Despite similar levels of viral replication and inflammatory responses in the lungs of both age groups, aged but not young hamsters showed significant prolongation of prothrombin time and prominent acute kidney damage. Moreover, aged hamsters demonstrated increased intravascular coagulation time-dependently in the lungs, suggesting that consumption of coagulation factors causes prothrombin time prolongation. Furthermore, proximal urinary tract damage and mesangial matrix expansion were observed in the kidneys of the aged hamsters at early and later disease stages, respectively. Given that the severity and mortality of COVID-19 are higher in elderly human patients, the effect of aging on pathogenesis needs to be understood and should be considered for the selection of animal models. We, thus, propose that the aged hamster is a good small animal model for COVID-19 research.


Asunto(s)
Lesión Renal Aguda/patología , Coagulación Sanguínea , COVID-19/complicaciones , COVID-19/metabolismo , COVID-19/virología , SARS-CoV-2 , Sistema Urinario/patología , Lesión Renal Aguda/virología , Animales , Chlorocebus aethiops , Modelos Animales de Enfermedad , Humanos , Pulmón/patología , Pulmón/virología , Masculino , Mesocricetus/virología , Transcriptoma , Sistema Urinario/virología , Células Vero , Carga Viral , Replicación Viral
10.
Sci Rep ; 11(1): 15675, 2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34344944

RESUMEN

Although coagulation abnormalities, including microvascular thrombosis, are thought to contribute to tissue injury and single- or multiple-organ dysfunction in severe influenza, the detailed mechanisms have yet been clarified. This study evaluated influenza-associated abnormal blood coagulation utilizing a severe influenza mouse model. After infecting C57BL/6 male mice with intranasal applications of 500 plaque-forming units of influenza virus A/Puerto Rico/8/34 (H1N1; PR8), an elevated serum level of prothrombin fragment 1 + 2, an indicator for activated thrombin generation, was observed. Also, an increased gene expression of oxidized low-density lipoprotein (LDL) receptor-1 (Olr1), a key molecule in endothelial dysfunction in the progression of atherosclerosis, was detected in the aorta of infected mice. Body weight decrease, serum levels of cytokines and chemokines, viral load, and inflammation in the lungs of infected animals were similar between wild-type and Olr1 knockout (KO) mice. In contrast, the elevation of prothrombin fragment 1 + 2 levels in the sera and intravascular thrombosis in the lungs by PR8 virus infection were not induced in KO mice. Collectively, the results indicated that OLR1 is a critical host factor in intravascular thrombosis as a pathogeny of severe influenza. Thus, OLR1 is a promising novel therapeutic target for thrombosis during severe influenza.


Asunto(s)
Biomarcadores , Susceptibilidad a Enfermedades , Infecciones por Orthomyxoviridae/complicaciones , Receptores Depuradores de Clase E/metabolismo , Trombosis/etiología , Trombosis/metabolismo , Animales , Coagulación Sanguínea , Citocinas/sangre , Modelos Animales de Enfermedad , Ratones , Ratones Noqueados , Infecciones por Orthomyxoviridae/diagnóstico , Infecciones por Orthomyxoviridae/virología , Tiempo de Tromboplastina Parcial , Receptores Depuradores de Clase E/genética , Índice de Severidad de la Enfermedad , Trombina/biosíntesis , Trombosis/diagnóstico , Carga Viral
11.
J Clin Med ; 10(9)2021 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-34066436

RESUMEN

Atherosclerosis has been linked with an increased risk of atherosclerotic cardiovascular disease (ASCVD). Autoimmune rheumatic diseases (AIRDs) are associated with accelerated atherosclerosis and ASCVD. However, the mechanisms underlying the high ASCVD burden in patients with AIRDs cannot be explained only by conventional risk factors despite disease-specific factors and chronic inflammation. Nevertheless, the normal levels of plasma low-density lipoprotein (LDL) cholesterol observed in most patients with AIRDs do not exclude the possibility of increased LDL atherogenicity. By using anion-exchange chromatography, human LDL can be divided into five increasingly electronegative subfractions, L1 to L5, or into electropositive and electronegative counterparts, LDL (+) and LDL (-). Electronegative L5 and LDL (-) have similar chemical compositions and can induce adverse inflammatory reactions in vascular cells. Notably, the percentage of L5 or LDL (-) in total LDL is increased in normolipidemic patients with AIRDs. Electronegative L5 and LDL (-) are not recognized by the normal LDL receptor but instead signal through the lectin-like oxidized LDL receptor 1 (LOX-1) to activate inflammasomes involving interleukin 1ß (IL-1ß). Here, we describe the detailed mechanisms of AIRD-related ASCVD mediated by L5 or LDL (-) and discuss the potential targeting of LOX-1 or IL-1ß signaling as new therapeutic modalities for these diseases.

12.
Hepatol Res ; 51(7): 758-766, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33982310

RESUMEN

AIM: Direct-acting antivirals have revolutionized hepatitis C virus (HCV) therapy by providing a high sustained virological response (SVR) rate and subsequent favorable lipid increases. Proprotein convertase subtilisin-kexin like-9 (PCSK9) plays an important role in regulating quantitative lipid levels. This study examined the interactions between quantitative PCSK9 and lipid changes, as well as qualitative lipid changes in terms of lectin-like oxidized low-density lipoprotein (LDL) receptor-1 ligand containing apolipoprotein B (LAB) and high-density lipoprotein (HDL) cholesterol uptake capacity (HDL-CUC). METHODS: Patients with chronic HCV infection (N = 231) who achieved an SVR by direct-acting antivirals without lipid-lowering therapy were included for comparisons of PCSK9, LAB, HDL-CUC, and other clinical indices between pretreatment and SVR12 time points. RESULTS: LDL (LDL) cholesterol and HDL cholesterol levels were quantitatively increased at SVR12, along with higher PCSK9 (all p < 0.0001). PCSK9 was significantly correlated with LDL cholesterol (r = 0.244, p = 0.0003) and apolipoprotein B (r = 0.222, p = 0.0009) at SVR12. Regarding qualitative LDL changes, LAB was significantly decreased and LAB/LDL cholesterol and LAB/apolipoprotein B proportions were improved at SVR12 (all p < 0.0001). In terms of qualitative HDL changes, HDL-CUC was significantly ameliorated, along with HDL-CUC/HDL cholesterol, HDL-CUC/ apolipoprotein A1, and HDL-CUC/ apolipoprotein A2 at SVR12 (all p < 0.0001). CONCLUSIONS: HCV eradication by direct-acting antivirals may produce quantitative lipid profile changes, along with PCSK9 production recovery in addition to qualitative lipid improvement, which possibly confers the additional secondary benefits of atherosclerosis improvement and cardiovascular disease event reduction.

13.
Sci Rep ; 11(1): 5759, 2021 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-33707701

RESUMEN

The receptor for advanced glycation end-products (RAGE) and the G protein-coupled angiotensin II (AngII) type I receptor (AT1) play a central role in cardiovascular diseases. It was recently reported that RAGE modifies AngII-mediated AT1 activation via the membrane oligomeric complex of the two receptors. In this study, we investigated the presence of the different directional crosstalk in this phenomenon, that is, the RAGE/AT1 complex plays a role in the signal transduction pathway of RAGE ligands. We generated Chinese hamster ovary (CHO) cells stably expressing RAGE and AT1, mutated AT1, or AT2 receptor. The activation of two types of G protein α-subunit, Gq and Gi, was estimated through the accumulation of inositol monophosphate and the inhibition of forskolin-induced cAMP production, respectively. Rat kidney epithelial cells were used to assess RAGE ligand-induced cellular responses. We determined that RAGE ligands activated Gi, but not Gq, only in cells expressing RAGE and wildtype AT1. The activation was inhibited by an AT1 blocker (ARB) as well as a RAGE inhibitor. ARBs inhibited RAGE ligand-induced ERK phosphorylation, NF-κB activation, and epithelial-mesenchymal transition of rat renal epithelial cells. Our findings suggest that the activation of AT1 plays a central role in RAGE-mediated cellular responses and elucidate the role of a novel molecular mechanism in the development of cardiovascular diseases.


Asunto(s)
Membrana Celular/metabolismo , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Receptor de Angiotensina Tipo 1/metabolismo , Animales , Células CHO , Cricetulus , Transición Epitelial-Mesenquimal , Proteínas de Unión al GTP/metabolismo , Productos Finales de Glicación Avanzada/metabolismo , Humanos , Ligandos , Unión Proteica , Ratas , Albúmina Sérica Bovina/metabolismo , Transducción de Señal , Transgenes
14.
iScience ; 24(2): 102076, 2021 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-33659870

RESUMEN

Arrestin-dependent activation of a G-protein-coupled receptor (GPCR) triggers endocytotic internalization of the receptor complex. We analyzed the interaction between the pattern recognition receptor (PRR) lectin-like oxidized low-density lipoprotein (oxLDL) receptor (LOX-1) and the GPCR angiotensin II type 1 receptor (AT1) to report a hitherto unidentified mechanism whereby internalization of the GPCR mediates cellular endocytosis of the PRR ligand. Using genetically modified Chinese hamster ovary cells, we found that oxLDL activates Gαi but not the Gαq pathway of AT1 in the presence of LOX-1. Endocytosis of the oxLDL-LOX-1 complex through the AT1-ß-arrestin pathway was demonstrated by real-time imaging of the membrane dynamics of LOX-1 and visualization of endocytosis of oxLDL. Finally, this endocytotic pathway involving GPCR kinases (GRKs), ß-arrestin, and clathrin is relevant in accumulating oxLDL in human vascular endothelial cells. Together, our findings indicate that oxLDL activates selective G proteins and ß-arrestin-dependent internalization of AT1, whereby the oxLDL-LOX-1 complex undergoes endocytosis.

15.
J Lipid Res ; 62: 100001, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33410750

RESUMEN

Adiponectin, an adipocyte-derived protein, has antiatherogenic and antidiabetic effects, but how it confers the atherogenic effects is not well known. To study the antiatherogenic mechanisms of adiponectin, we examined whether it interacts with atherogenic low density lipoprotein (LDL) to attenuate LDL's atherogenicity. L5, the most electronegative subfraction of LDL, induces atherogenic responses similarly to copper-oxidized LDL (oxLDL). Unlike the native LDL endocytosed via the LDL receptor, L5 and oxLDL are internalized by cells via the lectin-like oxidized LDL receptor-1 (LOX-1). Using enzyme-linked immunosorbent assays (ELISAs), we showed that adiponectin preferentially bound oxLDL but not native LDL. In Chinese hamster ovary (CHO) cells transfected with the LOX-1 or LDL receptor, adiponectin selectively inhibited the uptake of oxLDL but not of native LDL, respectively. Furthermore, adiponectin suppressed the internalization of oxLDL in human coronary artery endothelial cells (HCAECs) and THP-1-derived macrophages. Western blot analysis of human plasma showed that adiponectin was abundant in L5 but not in L1, the least electronegative subfraction of LDL. Sandwich ELISAs with anti-adiponectin and anti-apolipoprotein B antibodies confirmed the binding of adiponectin to L5 and oxLDL. In LOX-1-expressing CHO cells, adiponectin inhibited cellular responses to oxLDL and L5, including nuclear factor-κB activation and extracellular signal-regulated kinas phosphorylation. In HCAECs, adiponectin inhibited oxLDL-induced endothelin-1 secretion and extracellular signal-regulated kinase phosphorylation. Conversely, oxLDL suppressed the adiponectin-induced activation of adenosine monophosphate-activated protein kinase in COS-7 cells expressing adiponectin receptor AdipoR1. Our findings suggest that adiponectin binds and inactivates atherogenic LDL, providing novel insight into the antiatherogenic mechanisms of adiponectin.


Asunto(s)
Adiponectina
16.
Eur Heart J ; 42(18): 1797-1807, 2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-36282110

RESUMEN

Cardiovascular diseases (CVDs), specifically lipid-driven atherosclerotic CVDs, remain the number one cause of death worldwide. The lectin-like oxidized low-density lipoprotein (LDL) receptor-1 (LOX-1), a scavenger receptor that promotes endothelial dysfunction by inducing pro-atherogenic signalling and plaque formation via the endothelial uptake of oxidized LDL (oxLDL) and electronegative LDL, contributes to the initiation, progression, and destabilization of atheromatous plaques, eventually leading to the development of myocardial infarction and certain forms of stroke. In addition to its expression in endothelial cells, LOX-1 is expressed in macrophages, cardiomyocytes, fibroblasts, dendritic cells, lymphocytes, and neutrophils, further implicating this receptor in multiple aspects of atherosclerotic plaque formation. LOX-1 holds promise as a novel diagnostic and therapeutic target for certain CVDs; therefore, understanding the molecular structure and function of LOX-1 is of critical importance. In this review, we highlight the latest scientific findings related to LOX-1, its ligands, and their roles in the broad spectrum of CVDs. We describe recent findings from basic research, delineate their translational value, and discuss the potential of LOX-1 as a novel target for the prevention, diagnosis, and treatment of related CVDs.


Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , Placa Aterosclerótica , Humanos , Receptores Depuradores de Clase E/metabolismo , Células Endoteliales/metabolismo , Ligandos , Aterosclerosis/metabolismo , Lipoproteínas LDL/metabolismo , Receptores Depuradores
17.
Eur Heart J ; 42(18): 1797-1807, 2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-33159784

RESUMEN

Cardiovascular diseases (CVDs), specifically lipid-driven atherosclerotic CVDs, remain the number one cause of death worldwide. The lectin-like oxidized low-density lipoprotein (LDL) receptor-1 (LOX-1), a scavenger receptor that promotes endothelial dysfunction by inducing pro-atherogenic signalling and plaque formation via the endothelial uptake of oxidized LDL (oxLDL) and electronegative LDL, contributes to the initiation, progression, and destabilization of atheromatous plaques, eventually leading to the development of myocardial infarction and certain forms of stroke. In addition to its expression in endothelial cells, LOX-1 is expressed in macrophages, cardiomyocytes, fibroblasts, dendritic cells, lymphocytes, and neutrophils, further implicating this receptor in multiple aspects of atherosclerotic plaque formation. LOX-1 holds promise as a novel diagnostic and therapeutic target for certain CVDs; therefore, understanding the molecular structure and function of LOX-1 is of critical importance. In this review, we highlight the latest scientific findings related to LOX-1, its ligands, and their roles in the broad spectrum of CVDs. We describe recent findings from basic research, delineate their translational value, and discuss the potential of LOX-1 as a novel target for the prevention, diagnosis, and treatment of related CVDs.


Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , Células Endoteliales , Humanos , Lipoproteínas LDL , Receptores de LDL , Receptores Depuradores de Clase E
18.
Atherosclerosis ; 313: 20-25, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33011550

RESUMEN

BACKGROUND AND AIMS: Dysfunctional high-density lipoprotein (HDL) is a risk factor for cardiovascular disease (CVD) beyond HDL concentrations. Recently, a novel method has been introduced to measure LOX-1 ligand containing apolipoprotein AI (LAA), which is an indicator of various types of modified HDL with binding capacity to LOX-1 and related to impaired anti-atherogenic functions of HDL. This study aimed to examine the relationship between LAA as a novel marker of dysfunctional HDL and coronary artery calcification (CAC). METHODS: We selected 910 community-dwelling Japanese men aged 40-79 years without a history of CVD. The odds ratios per 1SD of LAA for the presence of CAC (Agatston score >10) were estimated using logistic regression model adjusted for confounders, including HDL-C or HDL particle (HDL-P) concentration. In addition, we performed further analysis stratified by age (<65 and ≥ 65 years). RESULTS: The mean age of the participants was 63.6 years, and the median LAA was 187.0 ng/mL. The prevalent CAC was 46.2%. The multivariable adjusted odds ratio (95% confidence interval) per 1SD of LAA for CAC was 1.14 (0.96-1.36) for all participants. After stratification by age, multivariable adjusted odds ratios per 1SD of LAA were 1.34 (1.02-1.76) and 0.97 (0.77-1.23) in men aged <65 and ≥ 65 years, respectively. CONCLUSIONS: The present study showed that LAA was associated with CAC independent of HDL-C or HDL-P in middle-aged Japanese men. This finding suggests that LAA might be an early marker for CVD events. Future longitudinal studies are warranted.


Asunto(s)
Enfermedad de la Arteria Coronaria , Calcificación Vascular , Anciano , Apolipoproteína A-I , Enfermedad de la Arteria Coronaria/diagnóstico , Enfermedad de la Arteria Coronaria/epidemiología , Vasos Coronarios , Humanos , Japón/epidemiología , Ligandos , Lipoproteínas HDL , Masculino , Persona de Mediana Edad , Factores de Riesgo , Receptores Depuradores de Clase E , Calcificación Vascular/diagnóstico por imagen , Calcificación Vascular/epidemiología
19.
Clin Sci (Lond) ; 134(17): 2295-2313, 2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32856035

RESUMEN

The lectin-like oxidized low-density-lipoprotein (oxLDL) receptor-1 (LOX-1) has been shown to induce angiotensin II (AngII) type 1 receptor (AT1) activation, contributing to vascular dysfunction. Preeclampsia is a pregnancy complication characterized by vascular dysfunction and increased LOX-1 and AT1 activation; however, whether LOX-1 and AT1 activity contributes to vascular dysfunction in preeclampsia is unknown. We hypothesized that increased oxLDL levels during pregnancy lead to LOX-1 activation and subsequent AT1 activation, resulting in vascular dysfunction. Pregnant wild-type (WT) and transgenic LOX-1 overexpressing (LOX-1tg) mice were fed a control diet (CD) or high-cholesterol diet (HCD, to impair vascular function) between gestational day (GD) 13.5-GD18.5. On GD18.5, AngII-induced vasoconstriction and methylcholine (MCh)-induced endothelium-dependent vasodilation responses were assessed in aortas and uterine arteries. HCD decreased fetal weight and increased circulating oxLDL/cholesterol levels in WT, but not in LOX-1tg mice. HCD did not alter AngII responsiveness or AT1 expression in both vascular beds; however, AngII responsiveness and AT1 expression were lower in aortas from LOX-1tg compared with WT mice. In aortas from WT-CD mice, acute oxLDL exposure induced AT1-mediated vasoconstriction via LOX-1. HCD impaired endothelium-dependent vasodilation and increased superoxide levels in WT aortas, but not uterine arteries. Moreover, in WT-CD mice oxLDL decreased MCh sensitivity in both vascular beds, partially via LOX-1. In summary, HCD impaired pregnancy outcomes and vascular function, and oxLDL-induced LOX-1 activation may contribute to vascular dysfunction via AT1. Our study suggests that LOX-1 could be a potential target to prevent adverse outcomes associated with vascular dysfunction in preeclampsia.


Asunto(s)
Lipoproteínas LDL/farmacología , Receptor de Angiotensina Tipo 1/metabolismo , Receptores Depuradores de Clase E/metabolismo , Enfermedades Vasculares/fisiopatología , Angiotensina II , Animales , Aorta/efectos de los fármacos , Aorta/patología , Aorta/fisiopatología , Peso Corporal/efectos de los fármacos , Colesterol en la Dieta , Colina/análogos & derivados , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/patología , Endotelio Vascular/fisiopatología , Femenino , Feto/efectos de los fármacos , Feto/patología , Ratones Transgénicos , Estrés Oxidativo/efectos de los fármacos , Embarazo , Superóxidos/metabolismo , Arteria Uterina/patología , Arteria Uterina/fisiopatología , Enfermedades Vasculares/patología , Vasoconstricción/efectos de los fármacos , Vasodilatación/efectos de los fármacos
20.
Lipids Health Dis ; 19(1): 189, 2020 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-32825832

RESUMEN

BACKGROUND: Cardiac Ca2+/calmodulin-dependent protein kinase II (CaMKII) activation plays a critical role in cardiomyocyte (CM) apoptosis and arrhythmia. Functional ATP-sensitive potassium (KATP) channels are essential for cardiac protection during ischemia. In cultured CMs, L5 low-density lipoprotein (LDL) induces apoptosis and QTc prolongation. L5 is a highly electronegative and atherogenic aberrant form of LDL, and its levels are significantly higher in patients with cardiovascular-related diseases. Here, the role of L5 in cardiac injury was studied by evaluating the effects of L5 on CaMKII activity and KATP channel physiology in CMs. METHODS: Cultured neonatal rat CMs (NRCMs) were treated with a moderate concentration (ie, 7.5 µg/mL) of L5 or L1 (the least electronegative LDL subfraction). NRCMs were examined for apoptosis and viability, CaMKII activity, and the expression of phosphorylated CaMKIIδ and NOX2/gp91phox. The function of KATP and action potentials (APs) was analyzed by using the patch-clamp technique. RESULTS: In NRCMs, L5 but not L1 significantly induced cell apoptosis and reduced cell viability. Furthermore, L5 decreased Kir6.2 expression by more than 50%. Patch-clamp analysis showed that L5 reduced the KATP current (IKATP) density induced by pinacidil, a KATP opener. The partial recovery of the inward potassium current during pinacidil washout was susceptible to subsequent inhibition by the IKATP blocker glibenclamide. Suppression of IKATP by L5 significantly prolonged the AP duration. L5 also significantly increased the activity of CaMKII, the phosphorylation of CaMKIIδ, and the expression of NOX2/gp91phox. L5-induced apoptosis was prevented by the addition of the CaMKII inhibitor KN93 and the reactive oxygen species scavenger Mn (III)TBAP. CONCLUSIONS: L5 but not L1 induces CM damage through the activation of the CaMKII pathway and increases arrhythmogenicity in CMs by modulating the AP duration. These results help to explain the harmful effects of L5 in cardiovascular-related disease.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Canales KATP/metabolismo , Miocitos Cardíacos/metabolismo , Potenciales de Acción/fisiología , Animales , Apoptosis/fisiología , Western Blotting , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Supervivencia Celular/fisiología , Electrofisiología , Lipoproteínas LDL/metabolismo , Técnicas de Placa-Clamp , Fosforilación/fisiología , Canales de Potasio de Rectificación Interna/genética , Canales de Potasio de Rectificación Interna/metabolismo , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA