Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Molecules ; 28(22)2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-38005251

RESUMEN

The design of a simple approach enabling the detection of bisphenol A (BPA) in water samples without the need for large amounts of solvents is of utmost importance. This paper reports a simple method for the separation, concentration, and quantification of BPA in water samples using high-performance liquid chromatography with fluorescence detection (HPLC-FLD) after its microextraction into an in situ formed organic ion-associate (IA) liquid phase (LP). Novel IA phase components without conjugated double bonds, such as benzene rings, were investigated. Ethylhexyloxypropylamine hydrochloride and sodium dodecyl sulfate solutions were added to the water samples to form IAs. The aqueous phase and ion-associate liquid phase (IALP) were separated by centrifugation. The aqueous phase was removed, and the liquid phase was recovered and measured using HPLC-FLD or HPLC-electrochemical detection (ECD). The concentrated phase (IALP) had a relatively low viscosity and could be injected directly into the chromatograph without dissolving it in organic solvents. The detection limits for BPA by HPLC-FLD and HPLC-ECD were 0.009 and 0.3 µg L-1, respectively.

2.
J Environ Manage ; 342: 118305, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37290312

RESUMEN

The aim of this study was to clarify the impact of differences between historical and recently introduced irrigation and drainage management systems on water quality in the rivers around paddy fields. We investigated the seasonal variation in nutrients concentration and dissolved organic carbon (DOC) components in single- (used for intake only) and dual-purpose (used for both intake and drainage) channels during a 4-year period in the Himi region of Toyama, Central Japan. The system of dual-purpose channel has traditionally been used in the region of this study. A total of 197 three-dimensional excitation-emission matrix (3DEEM) fluorescence spectra of DOM in waters were applied for the parallel factor analysis (PARAFAC) modeling. Based on the 3DEEM and PARAFAC, the abundance of terrestrial humic-like components in the dual-purpose channel was significantly higher than that in the single-purpose channel. The even long-chain n-fatty acids derived associated with rice cropping in sediments of the dual-purpose channels were 22-30-fold higher than that of the single-purpose channel. In addition, the turbidity values of the river waters had significantly positive linear correlations with concentrations of K+, DOC, and humic-like components. These observations indicate that the dissolved nutrient concentrations in the river water were higher in the dual-purpose channel compared to those of the single-purpose channel, which may be supplied by leaching from the inflow of soil particles from the paddy fields. During the mid-irrigation period, the quantity of epiphytic chlorophyll a on artificial substrate tiles in the dual-purpose channel were 3.1-4.1-fold higher than that in the single-purpose channel. This study clear that the input of paddy drainage during the irrigation season significantly changes the DOC components in river waters and irrigation management is strongly linked to the primary production in agricultural channels. Therefore, it is important to consider the impact of the introduction of different irrigation and drainage management systems on water quality and productivity in order to maintain the riverine ecosystems around rice paddies, which are based on historical water use systems.


Asunto(s)
Ríos , Calidad del Agua , Ecosistema , Japón , Clorofila A , Espectrometría de Fluorescencia
3.
Anal Sci ; 39(6): 857-865, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36795319

RESUMEN

A highly sensitive and simple solid-phase colorimetry for Cr(VI) was proposed. It was based on the ion-pair solid-phase extraction of Cr-diphenylcarbazide (DPC) complex with sedimentable dispersed particulates. The concentration of Cr(VI) was measured from the color tones obtained by image analysis of the photo of sediment. Various conditions, e.g., material and amounts of adsorbent particulates, chemical properties and concentration of counter ions, and pH, were optimized for the formation and quantitative extraction of the complex. In the recommended procedure, 1 mL of sample was put into a 1.5 mL microtube where powder form adsorbent and reagents, i.e., XAD-7HP particles, DPC, sodium dodecyl sulfate, amido sulfuric acid, and sodium chloride had been packed. The analytical operation was completed within 5 min by gently shaking the microtube and allowing it to stand until enough amounts of particulates were deposited to take a picture. Chromium (VI) up to 2.0 ppm was determined, and the detection limit was 0.0034 ppm. The sensitivity was enough to determine Cr(VI) at lower concentrations than the water quality of standard (0.02 ppm). This method was successfully applied to the analysis of simulated industrial wastewater samples. The stoichiometry of the extracted chemical species was also investigated by applying the same equilibrium model as the ion-pair solvent extraction.

4.
Anal Sci ; 39(1): 123-129, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36404370

RESUMEN

Soil enzymes are biological indicators in environmental and agricultural monitoring. However, brownish humic acid (HA) in samples interferes significantly with various analytical methods, especially in optical-based techniques. Here, we implemented a coagulation-flocculation process to carry out continuously an enzymatic reaction without separation and transfer of a sample solution. The elimination of HA in a soil suspension using poly-γ-glutamic acid (PGA) by coagulation to minimize the HA interference in soil enzymatic analysis was investigated. As a result of the optimization of preliminary parameters, the removal efficiency of HA was > 92% in 100 mg L-1 HA in neutral pH, using 100 mg L-1 PGA and aluminum trivalent as a coagulant aid. However, the fluorescent intensity of the enzyme product (i.e., 4-methylumbelliferone) decreases by about 50% as HA was removed under the conditions used. A decrease in the enzymatic detection of 3,3',5,5'-tetramethylbenzidine (TMB) was not observed from treated samples even though the initial level of HA was different. The results suggested that the coagulation-flocculation approach is suitable for the reduction of HA interference, while maintaining target analyte detection. Therefore, the proposed sample treatment can be used to examine enzyme activity based on TMB product detection without regular standard addition calibration.


Asunto(s)
Sustancias Húmicas , Suelo , Sustancias Húmicas/análisis , Ácido Glutámico , Floculación , Aluminio/análisis
5.
Anal Bioanal Chem ; 414(29-30): 8389-8400, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36260127

RESUMEN

A novel simple and functional colorimetric methodology for on-site environmental water analysis was proposed. This method combines coloration of the analyte and extraction of the colored species on dispersed particulates during their sedimentation in the same container. The whole analysis can be performed within 15 min by comprising the addition of 1 mL of sample solution into a 1.5-mL microtube containing the powders of coloring reagents and the sedimentable fine particulates as an adsorbent. The analyte is determined by comparing the sediment color with the standard color by visual inspection or the color information of the photo image. The potential of this methodology was demonstrated through developing colorimetry for Fe2+ with o-phenanthroline, NO2- by azo-dye formation, HCHO by the MBTH method, and PO43- by the 4-aminoantipyrine method based on the enzyme reactions. The material, size, amount of the adsorbent particles, and other conditions were optimized for each analytes. The advantages of the methodology were as follows: high sensitivity, easy controllability of the sensitivity over the wide range by the amount, size, and material of the particulates, lower interference from the colored matrix components due to obtaining the color data from not the aqueous phase but the sedimented particulates, and acceleration of the color development rate by the particulates as seen in NO2- determination as consequence shorten the operation time. A simple device equipped with twin cells was proposed for on-site analysis which contains two successive different coloring operations. The developed methods were successfully applied to the environmental water samples with the good agreement of the results with those by the usual instrumental methods.


Asunto(s)
Colorimetría , Dióxido de Nitrógeno , Colorimetría/métodos , Extracción en Fase Sólida/métodos , Agua , Compuestos Azo
6.
Environ Sci Pollut Res Int ; 28(11): 13425-13438, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33179191

RESUMEN

Formaldehyde (HCHO) is a naturally occurring compound found in ambient air which can induce cancer and sick-building syndrome. It plays an important role in the formation of OH radicals, which are connected to the formation of various airborne chemicals. Herein, we present a simple modeling for the simulation of diurnal variations in the HCHO concentration of ambient air. This was achieved using data collected during different seasons from November 2015 to March 2017 at a suburban location in Toyama City (Japan), where non-methane hydrocarbon (NMHC) levels were low at sub carbon ppm (ppmC) order. The modeling was based on the assumption that photochemical reactions of methane were the major factor of secondary HCHO formation. The model took into account the production and decomposition of HCHO by photochemical reactions as well as its loss due to other reactions such as dry deposition. Accordingly, the model's equation contained terms for solar radiation, temperature, and methane concentration. The results predicted using the model showed good agreement with the experimental data observed on fine days, i.e., except rainy, foggy, and heavily cloudy days. The relationships between HCHO concentration and solar radiation/temperature on different days as well as the seasonal variation of HCHO concentration were also interpreted by the proposed model. This study contributes to the evaluation of the pollution levels of formaldehyde. Moreover, the model may be used to demonstrate the impact of increasing methane levels, with regard to global warming and the background levels of HCHO in the atmosphere.


Asunto(s)
Contaminantes Atmosféricos , Contaminantes Atmosféricos/análisis , Ciudades , Monitoreo del Ambiente , Formaldehído/análisis , Japón
7.
Environ Sci Pollut Res Int ; 28(1): 211-219, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32803611

RESUMEN

Dissolved humic substances (DHSs) are the major components of organic matter in the aquatic environment. DHSs are well known to considerably affect the speciation, solubility, and toxicity of a wide variety of pollutants in the aquatic environment. In this study, the effects of the toxicity of heavy metals and hydrophobic organic pollutants (HOPs) on Chlamydomonas reinhardtii in the presence of humic acid (HA) were examined by a microscale algal growth inhibition (µ-AGI) test based on spectrophotometric detection. To clarify the relationship between the chemical properties of HAs and the toxicity change of pollutants, eight HAs from different sources were prepared and used. HAs were responsible for mitigating the toxicity of Hg, Cu, pesticides (γ-HCH, 2,4-D, and DDT), and polycyclic aromatic hydrocarbons (PAHs) such as naphthalene (Nap), anthracene (Ant), and benzo[a]pyrene (BaP). In particular, an approximately 100-fold decrease in the toxicity of BaP was observed in the presence of 10 ppm HAs extracted from tropical peat. The results indicated that the carboxylic group content and the HA molecular weight are correlated to the changes in the heavy metal toxicity. For HOPs, the aromaticity and polarity of HAs are crucial for mitigating their toxicity. Furthermore, it was clearly shown that the lake water including a high concentration of DHSs collected from Central Kalimantan, Indonesia, reduced the toxicity of Hg and γ-HCH on Chlamydomonas reinhardtii. Graphical abstract.


Asunto(s)
Chlamydomonas reinhardtii , Contaminantes Ambientales , Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Sustancias Húmicas , Indonesia , Hidrocarburos Policíclicos Aromáticos/toxicidad , Contaminantes Químicos del Agua/toxicidad
8.
Anal Sci ; 36(5): 601-605, 2020 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-32224559

RESUMEN

Wildfires that expose the soil organic layer to high heat levels can alter soil organic matter (SOM), which includes water-soluble organic matter (WSOM) components. Various evaluation methods were used to characterize and quantify the effects of high heat levels on SOM and WSOM, including ion chromatography, thermogravimetry-differential thermal analysis (TG-DTA), colorimetry, elemental analysis, pyrolysis-gas chromatography-mass spectrometry using tetramethylammonium hydroxide (TMAH-py-GC/MS), total organic carbon (TOC) analysis, three-dimensional excitation-emission matrix (3DEEM) spectroscopy, and high-performance size-exclusion chromatography. In this study, we applied each of these evaluation methods using soil samples that were collected from broadleaf, coniferous, and bamboo forests and peatland in Japan and exposed to different initial high heat levels. Based on the TG-DTA results, the remaining mass in select soil samples markedly decreased when reheated to approximately 200°C. Comparatively, the TMAH-py-GC/MS results indicated a drastic change in SOM composition and the production of low molecular organic components (

9.
Anal Sci ; 36(5): 595-599, 2020 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-32201409

RESUMEN

We developed an ion-associate phase (IAP)-extraction/acid back-extraction system for the preconcentration and atomic spectrometric determination of lithium trace amounts in water. The chelating reagent for lithium also works as a constituent of the extraction phase. The lithium in a 10 mL sample solution was converted through a chelate complex reaction with 2,2,6,6-tetramethyl-3,5-heptanedione (HDPM). The addition of a benzyldimethyltetradecylammonium ion caused the formation of IAP suspension in the solution. Centrifugation of the solution led to the isolation of a liquid organic phase and the lithium complex was extracted as the upper phase from the centrifuge tube. After the aqueous phase was removed, lithium was back-extracted with a 400 µL nitric acid solution from the IAP. The acid phase was measured using liquid-electrode-plasma atomic-emission-spectrometry (LEP-AES) or graphite-furnace atomic-absorption spectroscopy (GF-AAS). The detection limits were 0.02 mg/L for LEP-AES and 0.02 µg/L for GF-AAS. This system was applied to the determination of environmental water. The HDPM in the organic phase was reusable.

10.
Environ Sci Pollut Res Int ; 25(30): 30325-30338, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30159838

RESUMEN

Increases in global wildfires and fire severity are expected to result from global warming. Severe wildfires not only burn surface vegetation but also affect forest soil. Humic substances play key roles in the transport of nutrients and the carbon cycle in terrestrial ecosystems. In this study, we evaluated the effects of forest fires on the chemical properties of fulvic acid (FA) and humic acid (HA) extracted from non-burned and burned forest soils in Gunma, Japan. The differential thermal analysis of FA indicated that the intensity of exothermic reaction peak at 400 °C was 2-fold higher than that from non-burned soil. Based on pyrolysis-gas chromatography-mass spectrometry analysis with tetramethyl ammonium hydroxide, the amount of pyrolysate compounds in FA from burnt soil was significantly lower than that in FA from non-burnt soil. Therefore, we can conclude that the forest fire caused the significant change in the properties of FA such as increasing the aromaticity and refractory. In addition, the concentration of dissolved organic carbon with low molecular weight in surface soil increased after forest fire. This study suggests that the denaturation of soil organic matter by wildfire can affect the carbon cycle in terrestrial ecosystems.


Asunto(s)
Benzopiranos/análisis , Ciclo del Carbono , Carbono/análisis , Bosques , Sustancias Húmicas/análisis , Suelo/química , Incendios Forestales , Ecosistema , Incendios , Japón , Compuestos de Amonio Cuaternario
11.
Chemosphere ; 204: 63-70, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29653323

RESUMEN

Tetrahalobisphenol A (TXPBAs, X = Br or Cl), TBBPA and TCBPA, which are widely used as flame retardants, ultimately disposed of in landfills. In landfills, enzymatically oxidized TXBPAs can be covalently incorporated into humic acids (HAs) to form coupling products (HA-TXBPAs). In the present study, HA-TXBPAs were prepared by catalytic oxidation with iron(III)-phthalocyanine-tetrasulfate as a model of oxidative enzymes. The stability of HA-TXBPAs was evaluated by incubating them under physicochemical conditions of landfills (pH 9 and 50 °C). For HA-TBBPA, 18-26% of TBBPA was released from HA-TBBPA, due to the acid dissociation of the loosely bound TBBPA. However, no additional release was observed, even after 30 days, indicating that 74-82% of the TBBPA was incorporated into the HA. For HA-TCBPA, 3-4% of TCBPA and a major byproduct, 4-(2-hydroxyisopropyl)-2,6-dichlorophenol, was found to be loosely incorporated into HA. For both TBBPA and TCBPA, covalently bound organo-halogens were not released during the 30 days of incubation. Inhibition of the growth of Chlamydomonas reinhardtii was indicated when trace levels of TXBPAs (approximately 0.1 µM) were present. These results suggest that HA-TXBPAs contain not only covalently incorporated TXBPAs but also loosely bound TXBPAs and halophenols. The latter in HA-TXBPAs have the potential to leach from landfills and affect aquatic ecosystems.


Asunto(s)
Materiales Biomiméticos/química , Retardadores de Llama , Sustancias Húmicas , Bifenilos Polibrominados/química , Contaminantes Químicos del Agua/química , Compuestos de Bencidrilo/química , Catálisis , Compuestos Férricos/química , Halógenos/química , Oxidación-Reducción , Fenoles/química
12.
Chemosphere ; 188: 337-344, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28888859

RESUMEN

We developed an electrochemical microalgal bioassay for the determination of heavy metal toxicity in water on the basis of the alkaline phosphatase (ALP) enzyme inhibition of Chlamydomonas reinhardtii. Five heavy metals were chosen as toxicants: Hg, Cd, Pb, Zn, and Cu. The induced ALP activity of C. reinhardtii was inhibited using the phosphate starvation method, and the results were evaluated by measuring the electrochemical oxidation of p-aminophenol (PAP) following the enzymatic conversion of p-aminophenyl phosphate (PAPP) as a substrate. The rapid determination of enzymatic activity was achieved using hydrodynamic voltammetry in a 50 µL micro-droplet with a rotating disk electrode (RDE). Enzymatic activity over a PAPP substrate is affected by heavy metal ions, and this phenomenon decreases the chronoamperometric current signal. The concentrations of Hg, Cd, Pb, Zn, and Cu in which the ALP activity was half that of the control (EC50) were found to be 0.017, 0.021, 0.27, 1.30, and 1.36 µM, respectively. The RDE system was demonstrated to be capable of detecting enzymatic activity by using a small amount of regent, a reaction time of only 60 s, and a detection limit of 5.4 × 10-7 U.


Asunto(s)
Fosfatasa Alcalina/antagonistas & inhibidores , Bioensayo/métodos , Contaminantes Ambientales/análisis , Metales Pesados/toxicidad , Microalgas/efectos de los fármacos , Fosfatasa Alcalina/metabolismo , Aminofenoles/metabolismo , Chlamydomonas reinhardtii/enzimología , Chlamydomonas reinhardtii/metabolismo , Electroquímica/métodos , Contaminantes Ambientales/toxicidad , Hidrodinámica , Metales Pesados/análisis , Oxidación-Reducción
13.
Sensors (Basel) ; 15(3): 5331-43, 2015 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-25746097

RESUMEN

Soil enzymes play essential roles in catalyzing reactions necessary for nutrient cycling in the biosphere. They are also sensitive indicators of ecosystem stress, therefore their evaluation is very important in assessing soil health and quality. The standard soil enzyme assay method based on spectroscopic detection is a complicated operation that requires the removal of soil particles. The purpose of this study was to develop a new soil enzyme assay based on hydrodynamic electrochemical detection using a rotating disk electrode in a microliter droplet. The activities of enzymes were determined by measuring the electrochemical oxidation of p-aminophenol (PAP), following the enzymatic conversion of substrate-conjugated PAP. The calibration curves of ß-galactosidase (ß-gal), ß-glucosidase (ß-glu) and acid phosphatase (AcP) showed good linear correlation after being spiked in soils using chronoamperometry. We also performed electrochemical detection using real soils. Hydrodynamic chronoamperometry can be used to assess the AcP in soils, with a detection time of only 90 s. Linear sweep voltammetry was used to measure the amount of PAP released from ß-gal and ß-glu by enzymatic reaction after 60 min. For the assessment of soil enzymes, the results of hydrodynamic voltammetry assay compared favorably to those using a standard assay procedure, but this new procedure is more user-friendly, rapid and simple.


Asunto(s)
Fosfatasa Ácida/aislamiento & purificación , Técnicas Biosensibles , beta-Galactosidasa/aislamiento & purificación , beta-Glucosidasa/aislamiento & purificación , Fosfatasa Ácida/química , Ecosistema , Pruebas de Enzimas , Hidrodinámica , Oxidación-Reducción , Microbiología del Suelo , beta-Galactosidasa/química , beta-Glucosidasa/química
14.
Environ Sci Pollut Res Int ; 22(4): 2384-95, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24781330

RESUMEN

When peat forest fires happen, it leads to burn soil and also humic acids as a dominant organic matter contained in peat soil as well as the forest. The structure and properties of humic acids vary depending on their origin and environment, therefore the transformation of humic acid is also diverse. The impacts of the peat fires on peat soil from Central Kalimantan, Indonesia were investigated through the characterization of humic acids, extracted from soil in burnt and unburnt sites. The characterization of humic acids was performed by elemental composition, functional groups, molecular weight by HPSEC, pyrolysate compounds by pyrolysis-GC/MS, fluorescence spectrum by 3DEEM spectrofluorometer, and thermogravimetry. The elemental composition of each humic substance indicated that the value of H/C and O/C of humic acids from burnt sites were lower than that from unburnt sites. The molecular weight of humic acids from burnt sites was also lower than that from unburnt sites. Pyrolysate compounds of humic acids from unburnt sites differed from those of humic acids from burnt soil. The heating experiment showed that burning process caused the significant change in the properties of humic acids such as increasing the aromaticity and decreasing the molecular weight.


Asunto(s)
Sustancias Húmicas/análisis , Incendios , Cromatografía de Gases y Espectrometría de Masas , Indonesia , Peso Molecular , Espectrometría de Fluorescencia , Termogravimetría
15.
Sensors (Basel) ; 12(12): 17414-32, 2012 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-23242275

RESUMEN

The SOS/umu genotoxicity assay evaluates the primary DNA damage caused by chemicals from the ß-galactosidase activity of S. typhimurium. One of the weaknesses of the common umu test system based on spectrophotometric detection is that it is unable to measure samples containing a high concentration of colored dissolved organic matters, sediment, and suspended solids. However, umu tests with electrochemical detection techniques prove to be a better strategy because it causes less interference, enables the analysis of turbid samples and allows detection even in small volumes without loss of sensitivity. Based on this understanding, we aim to develop a new umu test system with hydrodynamic chronoamperometry using a rotating disk electrode (RDE) in a microliter droplet. PAPG when used as a substrate is not electroactive at the potential at which PAP is oxidized to p-quinone imine (PQI), so the current response of chronoamperometry resulting from the oxidation of PAP to PQI is directly proportional to the enzymatic activity of S. typhimurium. This was achieved by performing genotoxicity tests for 2-(2-furyl)-3-(5-nitro-2-furyl)-acrylamide (AF-2) and 2-aminoanthracene (2-AA) as model genotoxic compounds. The results obtained in this study indicated that the signal detection in the genotoxicity assay based on hydrodynamic voltammetry was less influenced by the presence of colored components and sediment particles in the samples when compared to the usual colorimetric signal detection. The influence caused by the presence of humic acids (HAs) and artificial sediment on the genotoxic property of selected model compounds such as 4-nitroquinoline-N-oxide (4-NQO), 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX), 1,8-dinitropyrene (1,8-DNP) and 1-nitropyrene (1-NP) were also investigated. The results showed that the genotoxicity of 1-NP and MX changed in the presence of 10 mg∙L-1 HAs. The genotoxicity of tested chemicals with a high hydrophobicity such as 1,8-DNP and 1-NP were decreased substantially with the presence of 1 g∙L-1 sediment. This was not observed in the case of genotoxins with a low log K(ow) value.


Asunto(s)
Daño del ADN/efectos de los fármacos , Mutágenos/farmacología , Salmonella typhimurium/enzimología , beta-Galactosidasa/genética , 4-Nitroquinolina-1-Óxido/farmacología , Benzoquinonas/farmacología , Benzoquinonas/toxicidad , Furanos/farmacología , Pruebas de Mutagenicidad , Pirenos , Respuesta SOS en Genética , Salmonella typhimurium/efectos de los fármacos
16.
Int J Environ Res Public Health ; 8(5): 1655-70, 2011 05.
Artículo en Inglés | MEDLINE | ID: mdl-21655143

RESUMEN

The dissolved organic matter (DOM) is one of the important factors for controlling water quality. The behavior and constitutions of DOM is related to the risk of human health because it is able to directly or indirectly affect the behavior, speciation and toxicity of various environmental pollutants. However, it is not easy to know the contents of DOM components without using various complicated and time consuming analytical methods because DOM is a complex mixture and usually exists at low concentration. Here, we describe the fluorescence properties of DOM components in water samples collected from four rivers in Toyama, Japan by means of the three-dimensional excitation-emission matrix (3DEEM) fluorescence spectroscopy. In order to evaluate the alterations of DOM components in each of the river during the flow from upstream to downstream, the patterns of relative fluorescence intensity (RFI) at six peaks which are originated from fluorophores including humic-like and protein-like components were investigated. The changes in the patterns of RFI values at each of the peak and the concentration of dissolved organic carbon (DOC) for each river water sample were discussed in connection with the differences of land use managements and basic water quality parameters, such as pH, EC, turbidity, Fe(3+), T-N, NO(3)-N, T-P, PO(4)-P, chlorophyll a, DOC and N/P ratio. The DOC concentrations in the water samples collected from these rivers were relatively low (0.63-1.16 mg/L). Two main peaks which have a strong RFI value expressed a positive correlation with the DOC concentration (r = 0.557, 0.535). However, the correlations between the RFI values for other four peaks and the DOC concentration were below 0.287. The alterations of DOM components during the flow of a river from upstream to downstream were investigated from the changes in the patterns of RFI values for six fluorescent peaks. It was clarified that the great increase of RFI values in peak A and peak T from river water located in urban area showed high concentration of PO(4)-P and Fe(3+), and low N/P ratio due to the high biological activities. The values of fluorescence index (FIX) and biological index (BIX) were as high as 1.60 and 0.72, respectively.


Asunto(s)
Compuestos Orgánicos/análisis , Ríos/química , Espectrometría de Fluorescencia/métodos , Fluorescencia , Japón
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA