Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
J Med Chem ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39038808

RESUMEN

Haspin is an emerging, but rather unexplored, divergent kinase involved in tumor growth by regulating the mitotic phase. In this paper, the in-silico design, synthesis, and biological characterization of a new series of substituted indoles acting as potent Haspin inhibitors are reported. The synthesized derivatives have been evaluated by FRET analysis, showing very potent Haspin inhibition. Then, a comprehensive in-cell investigation highlighted compounds 47 and 60 as the most promising inhibitors. These compounds were challenged for their synergic activity with paclitaxel in 2D and 3D cellular models, demonstrating a twofold improvement of the paclitaxel antitumor activity. Compound 60 also showed remarkable selectivity when tested in a panel of 70 diverse kinases. Finally, in-silico studies provided new insight about the chemical requirements useful to develop new Haspin inhibitors. Biological results, together with the drug-likeness profile of 47 and 60, make these derivatives deserving further studies.

2.
Mar Drugs ; 22(2)2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38393023

RESUMEN

Mycalin A (MA) is a polybrominated C-15 acetogenin isolated from the marine sponge Mycale rotalis. Since this substance displays a strong antiproliferative bioactivity towards some tumour cells, we have now directed our studies towards the elucidation of the MA interactome through functional proteomic approaches, (DARTS and t-LIP-MS). DARTS experiments were performed on Hela cell lysates with the purpose of identifying MA main target protein(s); t-LiP-MS was then applied for an in-depth investigation of the MA-target protein interaction. Both these techniques exploit limited proteolysis coupled with MS analysis. To corroborate LiP data, molecular docking studies were performed on the complexes. Finally, biological and SPR analysis were conducted to explore the effect of the binding. Mortalin (GRP75) was identified as the MA's main interactor. This protein belongs to the Hsp70 family and has garnered significant attention due to its involvement in certain forms of cancer. Specifically, its overexpression in cancer cells appears to hinder the pro-apoptotic function of p53, one of its client proteins, because it becomes sequestered in the cytoplasm. Our research, therefore, has been focused on the possibility that MA might prevent this sequestration, promoting the re-localization of p53 to the nucleus and facilitating the apoptosis of tumor cells.


Asunto(s)
Acetogeninas , Proteínas HSP70 de Choque Térmico , Poríferos , Animales , Humanos , Acetogeninas/farmacología , Poríferos/metabolismo , Simulación del Acoplamiento Molecular , Células HeLa , Proteómica , Proteína p53 Supresora de Tumor/metabolismo
3.
Int J Mol Sci ; 24(18)2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37762571

RESUMEN

Effective therapy against the influenza virus is still an unmet goal. Drugs with antiviral effects exist, but the appearance of resistant viruses pushes towards the discovery of drugs with different mechanisms of action. New anti-influenza molecules should target a good candidate, as a new anti-influenza molecule could be an inhibitor of the influenza A virus hemagglutinin (HA), which plays a key role during the early phases of infection. In previous work, we identified two tetrapeptide sequences, SLDC (1) and SKHS (2), derived from bovine lactoferrin (bLf) C-lobe fragment 418-429, which were able to bind HA and inhibit cell infection at picomolar concentration. Considering the above, the aim of this study was to synthesize a new library of peptidomimetics active against the influenza virus. In order to test their ability to bind HA, we carried out a preliminary screening using biophysical assays such as surface plasmon resonance (SPR) and orthogonal immobilization-free microscale thermophoresis (MST). Biological and computational studies on the most interesting compounds were carried out. The methods applied allowed for the identification of a N-methyl peptide, S(N-Me)LDC, which, through high affinity binding of influenza virus hemagglutinin, was able to inhibit virus-induced hemagglutination and cell infection at picomolar concentration. This small sequence, with high activity, represents a good starting point for the design of new peptidomimetics and small molecules.


Asunto(s)
Virus de la Influenza A , Peptidomiméticos , Peptidomiméticos/farmacología , Hemaglutininas , Antivirales/farmacología , Bioensayo
4.
Pharmaceutics ; 15(6)2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37376220

RESUMEN

In recent years, peptides have gained more success as therapeutic compounds. Nowadays, the preferred method to obtain peptides is solid-phase peptide synthesis (SPPS), which does not respect the principles of green chemistry due to the large number of toxic reagents and solvents used. The aim of this work was to research and study an environmentally sustainable solvent able to replace dimethylformamide (DMF) in fluorenyl methoxycarbonyl (Fmoc) solid-phase peptide synthesis. Herein, we report the use of dipropyleneglycol dimethylether (DMM), a well-known green solvent with low human toxicity following oral, inhalant, and dermal exposure and that is easily biodegradable. Some tests were needed to evaluate its applicability to all the steps of SPPS, such as amino acid solubility, resin swelling, deprotection kinetics, and coupling tests. Once the best green protocol was established, it was applied to the synthesis of different length peptides to study some of the fundamental parameters of green chemistry, such as PMI (process mass intensity) and the recycling of solvent. It was revealed that DMM is a valuable alternative to DMF in all steps of solid-phase peptide synthesis.

5.
Int J Mol Sci ; 23(19)2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36232735

RESUMEN

Influenza viruses represent a leading cause of high morbidity and mortality worldwide. Approaches for fighting flu are seasonal vaccines and some antiviral drugs. The development of the seasonal flu vaccine requires a great deal of effort, as careful studies are needed to select the strains to be included in each year's vaccine. Antiviral drugs available against Influenza virus infections have certain limitations due to the increased resistance rate and negative side effects. The highly mutative nature of these viruses leads to the emergence of new antigenic variants, against which the urgent development of new approaches for antiviral therapy is needed. Among these approaches, one of the emerging new fields of "peptide-based therapies" against Influenza viruses is being explored and looks promising. This review describes the recent findings on the antiviral activity, mechanism of action and therapeutic capability of antiviral peptides that bind HA, NA, PB1, and M2 as a means of countering Influenza virus infection.


Asunto(s)
Vacunas contra la Influenza , Gripe Humana , Infecciones por Orthomyxoviridae , Orthomyxoviridae , Antivirales/farmacología , Antivirales/uso terapéutico , Humanos , Gripe Humana/tratamiento farmacológico , Gripe Humana/prevención & control , Neuraminidasa , Péptidos/farmacología , Péptidos/uso terapéutico
7.
Int J Mol Sci ; 23(10)2022 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-35628409

RESUMEN

Coronaviruses, including SARS-CoV-2 (the etiological agent of the current COVID-19 pandemic), rely on the surface spike glycoprotein to access the host cells, mainly through the interaction of their receptor-binding domain (RBD) with the human angiotensin-converting enzyme 2 (ACE2). Therefore, molecular entities able to interfere with the binding of the SARS-CoV-2 spike protein to ACE2 have great potential to inhibit viral entry. Starting from the available structural data on the interaction between SARS-CoV-2 spike protein and the host ACE2 receptor, we engineered a set of soluble and stable spike interactors, here denoted as S-plugs. Starting from the prototype S-plug, we adopted a computational approach by combining stability prediction, associated to single-point mutations, with molecular dynamics to enhance both S-plug thermostability and binding affinity to the spike protein. The best developed molecule, S-plug3, possesses a highly stable α-helical con-formation (with melting temperature Tm of 54 °C) and can interact with the spike RBD and S1 domains with similar low nanomolar affinities. Importantly, S-plug3 exposes the spike RBD to almost the same interface as the human ACE2 receptor, aimed at the recognition of all ACE2-accessing coronaviruses. Consistently, S-plug3 preserves a low nanomolar dissociation constant with the delta B.1.617.2 variant of SARS-CoV-2 spike protein (KD = 29.2 ± 0.6 nM). Taken together, we provide valid starting data for the development of therapeutical and diagnostic tools against coronaviruses accessing through ACE2.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , Enzima Convertidora de Angiotensina 2/genética , Humanos , Glicoproteínas de Membrana/metabolismo , Pandemias , Peptidil-Dipeptidasa A/metabolismo , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Proteínas del Envoltorio Viral/química
8.
Front Mol Biosci ; 8: 715263, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34901149

RESUMEN

The fragile histidine triad (FHIT) protein is a member of the large and ubiquitous histidine triad (HIT) family of proteins. On the basis of genetic evidence, it has been postulated that the FHIT protein may function as tumor suppressor, implying a role for the FHIT protein in carcinogenesis. Recently, Gaudio et al. reported that FHIT binds and delocalizes annexin A4 (ANXA4) from plasma membrane to cytosol in paclitaxel-resistant lung cancer cells, thus restoring their chemosensitivity to the drug. They also identified the smallest protein sequence of the FHIT still interacting with ANXA4, ranging from position 7 to 13: QHLIKPS. This short sequence of FHIT protein was not only able to bind ANXA4 but also to hold its target in the cytosol during paclitaxel treatment, thus avoiding ANXA4 translocation to the inner side of the cell membrane. Starting from these results, to obtain much information about structure requirements involved in the interaction of the peptide mentioned above, we synthetized a panel of seven peptides through an Ala-scan approach. In detail, to study the binding of FHIT derived peptides with ANXA4, we applied a combination of different biophysical techniques such as differential scanning fluorimetry (DSF), surface plasmon resonance (SPR), and microscale thermophoresis (MST). Circular dichroism (CD) and nuclear magnetic resonance (NMR) were used to determine the conformational structure of the lead peptide (7-13) and peptides generated from ala-scan technique. The application of different biophysical and structural techniques, integrated by a preliminary biological evaluation, allowed us to build a solid structure activity relationship on the synthesized peptides.

9.
Pharmaceuticals (Basel) ; 14(10)2021 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-34681184

RESUMEN

Influenza is a highly contagious, acute respiratory illness, which represents one of the main health issues worldwide. Even though some antivirals are available, the alarming increase in virus strains resistant to them highlights the need to find new drugs. Previously, Superti et al. deeply investigated the mechanism of the anti-influenza virus effect of bovine lactoferrin (bLf) and the role of its tryptic fragments (the N- and C-lobes) in antiviral activity. Recently, through a truncation library, we identified the tetrapeptides, Ac-SKHS-NH2 (1) and Ac-SLDC-NH2 (2), derived from bLf C-lobe fragment 418-429, which were able to bind hemagglutinin (HA) and inhibit cell infection in a concentration range of femto- to picomolar. Starting from these results, in this work, we initiated a systematic SAR study on the peptides mentioned above, through an alanine scanning approach. We carried out binding affinity measurements by microscale thermophoresis (MST) and surface plasmon resonance (SPR), as well as hemagglutination inhibition (HI) and virus neutralization (NT) assays on synthesized peptides. Computational studies were performed to identify possible ligand-HA interactions. Results obtained led to the identification of an interesting peptide endowed with broad anti-influenza activity and able to inhibit viral infection to a greater extent of reference peptide.

10.
Eur J Med Chem ; 226: 113863, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34571172

RESUMEN

COVID-19 pandemic, starting from the latest 2019, and caused by SARS-CoV-2 pathogen, led to the hardest health-socio-economic disaster in the last century. Despite the tremendous scientific efforts, mainly focused on the development of vaccines, identification of potent and efficient anti-SARS-CoV-2 therapeutics still represents an unmet need. Remdesivir, an anti-Ebola drug selected from a repurposing campaign, is the only drug approved, so far, for the treatment of the infection. Nevertheless, WHO in later 2020 has recommended against its use in COVID-19. In the present paper, we describe a step-by-step in silico design of a small library of compounds as main protease (Mpro) inhibitors. All the molecules were screened by an enzymatic assay on Mpro and, then, cellular activity was evaluated using Vero cells viral infection model. The cellular screening disclosed compounds 29 and 34 as in-vitro SARS-CoV-2 replication inhibitors at non-toxic concentrations (0.32 < EC50 < 5.98 µM). To rationalize these results, additional in-vitro assays were performed, focusing on papain like protease (PLpro) and spike protein (SP) as potential targets for the synthesized molecules. This pharmacological workflow allowed the identification of compound 29, as a dual acting SARS-CoV-2 proteases inhibitor featuring micromolar inhibitory potency versus Mpro (IC50 = 1.72 µM) and submicromolar potency versus PLpro (IC50 = 0.67 µM), and of compound 34 as a selective SP inhibitor (IC50 = 3.26 µM).


Asunto(s)
Antivirales/farmacología , Diseño de Fármacos , Inhibidores de Proteasas/farmacología , SARS-CoV-2/efectos de los fármacos , Animales , Chlorocebus aethiops , Simulación por Computador , SARS-CoV-2/enzimología , Células Vero
11.
Pharmaceutics ; 12(8)2020 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-32756470

RESUMEN

Among enhancing strategies proposed in ocular drug delivery, a rising interest is directed to cell penetrating peptides (CPPs), amino acid short sequences primarily known for their intrinsic ability to cell internalization and, by extension, to cross biological barriers. In fact, CPPs may be considered as carrier for delivering therapeutic agents across biological membranes, including ocular tissues. Several CPPs have been proposed in ophthalmic delivery, and, among them, penetratin (PNT), a 16-amino acids natural peptide, stands out. Therefore, we describe the synthesis via the mimotopic approach of short fluorescently labeled analogues of both PNT and its reversed sequence PNT-R. Their ability to cross ocular membranes was checked ex vivo using freshly explanted porcine cornea. Furthermore, some sequences were studied by circular dichroism. Despite the hydrophilic nature and the relatively high molecular weight (approx. 1.6 kDa), all analogues showed a not negligible trans-corneal diffusion, indicating a partial preservation of penetration activity, even if no sequences reached the noteworthy ability of PNT. It was not possible to find a correlation between structure and corneal penetration ability, and further studies, exploring peptides distribution within corneal layers, for example using imaging techniques, deserve to be performed to figure out a possible difference in intracellular delivery.

12.
Hypertension ; 73(2): 449-457, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30595120

RESUMEN

Considered as a superfood of the future, Spirulina platensis matrix has been extensively used because of its beneficial effect on the management of cardiovascular diseases. However, its nutraceutical properties, bioactive compounds, and molecular mechanisms are unknown. Here, we demonstrate that S platensis matrix processed in vitro by simulated gastrointestinal digestion induces direct endothelial nitric oxide (NO)-mediated vasorelaxation of resistance vessels in mice. To gain insight into the bioactive compounds responsible for this effect, we used a complex multistep peptidomic approach to fractionate the crude digest: of the 5 peptide fractions identified (A-E), only fraction E evoked vasorelaxation. High-resolution mass spectrometry-based screening revealed in E the presence of 4 main peptides (SP3-SP6 [spirulina peptides]), of which only SP6 (GIVAGDVTPI) exerted direct endothelium-dependent vasodilation of ex vivo vessels, an effect occurring via a PI3K (phosphoinositide-3-kinase)/AKT (serine/threonine kinase Akt) pathway converging on NO release. In vivo, administration of SP6 evoked a significant hemodynamic effect, reducing blood pressure, an action absent in eNOS (endothelial NO synthase)-deficient mice. Of note, although lower doses of SP6 had no hemodynamic effects, it still enhanced endothelial NO vasorelaxation. Finally, in an experimental model of arterial hypertension, SP6 exerted an antihypertensive effect, improving endothelial vasorelaxation associated with enhanced serum nitrite levels. Based on our results, this novel decameric peptide may extend the possible fields of application for spirulina-derived peptides and could be developed into a promising nonpharmacological approach for the containment of pathologies associated with vascular NO misregulation.


Asunto(s)
Proteínas Bacterianas/farmacología , Presión Sanguínea/efectos de los fármacos , Óxido Nítrico Sintasa de Tipo III/fisiología , Péptidos/farmacología , Fosfatidilinositol 3-Quinasas/fisiología , Proteínas Proto-Oncogénicas c-akt/fisiología , Spirulina/química , Animales , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/fisiología , Ratones , Óxido Nítrico/fisiología , Vasodilatación/efectos de los fármacos
13.
Int J Mol Sci ; 19(7)2018 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-29973491

RESUMEN

Redox signaling regulates different gastrointestinal (G.I.) epithelium functions. At the intestinal level, the loss of redox homeostasis in intestinal epithelial cells (IECs) is responsible for the pathogenesis and development of a wide diversity of G.I. disorders. Thus, the manipulation of oxidative stress in IECs could represent an important pharmacological target for different diseases. In this study, peptides released from in vitro gastro intestinal digestion of different buffalo-milk commercial dairy products were identified and evaluated for their bioactive properties. In particular, six G.I. digests of dairy products were tested in a model of oxidative stress for IECs. Among them, buffalo ricotta cheese was the most active and the presence of an abundant ß-lactoglobulin peptide (YVEELKPTPEGDL, f:60-72) was also revealed. The antioxidant potential of the identified peptide was also evaluated in a model of hydrogen peroxide (H2O2)-induced oxidative stress in the IEC-6 cell line. The peptide was able to reduce ROS release, while, on the other hand, it increased nuclear factor (erythroid-derived 2)-like 2 (Nrf2) activation and the expression of antioxidant cytoprotective factors, such as heme oxygenase 1 (HO-1), NAD(P)H:quinone oxidoreductase 1 (NQO1), and superoxide dismutase (SOD). These results indicate that buffalo ricotta cheese-isolated peptide could have potential in the treatment of some gastrointestinal disorders.


Asunto(s)
Antioxidantes/farmacología , Queso/análisis , Productos Lácteos/análisis , Lactoglobulinas/química , Leche/química , Oligopéptidos/farmacología , Estrés Oxidativo/efectos de los fármacos , Animales , Antioxidantes/análisis , Búfalos , Línea Celular , Hemo Oxigenasa (Desciclizante)/metabolismo , Humanos , Mucosa Intestinal/metabolismo , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Oligopéptidos/análisis , Oligopéptidos/aislamiento & purificación , Ratas , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/metabolismo
14.
Amino Acids ; 50(10): 1367-1375, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29974257

RESUMEN

Bovine lactoferrin C-lobe is able to prevent both influenza virus hemagglutination and cell infection. In particular, it was demonstrated that the fragment 418SKHSSLDCVLRP429 is a potent antiviral peptide. Therefore, we tried to increase the stability of this fragment through side-chain lactam cyclization of the peptide, S[KHSSLD]CVLRP (1). However, classic strategy involving solid-supported cyclization of the linear precursor, containing orthogonal allyl/alloc-based protection for the key amino and carboxyl residues, did not provide the desired cyclic peptide. Here, we report the identification of problematic stretches during the sequence assembly process and the optimization of the different parameters involved in the construction of 1. Results indicated a significant influence of ß-protecting group of both aspartic acid and adjacent cysteine residues on the formation of side products. Therefore, the identification of suitable ß-protecting groups of these residues allowed us to optimize the synthesis of designed lactam-bridged cyclic peptide.


Asunto(s)
Lactamas/química , Lactoferrina/síntesis química , Péptidos Cíclicos/química , Animales , Ácido Aspártico/química , Bovinos , Ciclización , Cisteína/química , Lactoferrina/química
15.
ChemMedChem ; 13(16): 1673-1680, 2018 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-29888867

RESUMEN

PTPRJ is a receptor-like protein tyrosine phosphatase mainly known for its antiproliferative and tumor-suppressive functions. PTPRJ dephosphorylates several growth factors and their receptors, negatively regulating cell proliferation and migration. We recently identified a disulfide-bridged nonapeptide, named PTPRJ-19 (H-[Cys-His-His-Asn-Leu-Thr-His-Ala-Cys]-OH), which activates PTPRJ, thereby causing cell growth inhibition and apoptosis of both cancer and endothelial cells. With the aim of replacing the disulfide bridge by a chemically more stable moiety, we have synthesized and tested a series of lactam analogues of PTPRJ-19. This replacement led to analogues with higher activity and greater stability than the parent peptide.


Asunto(s)
Antineoplásicos/farmacología , Activadores de Enzimas/farmacología , Lactamas/farmacología , Péptidos Cíclicos/farmacología , Secuencia de Aminoácidos , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Quimotripsina/química , Diseño de Fármacos , Estabilidad de Medicamentos , Activadores de Enzimas/síntesis química , Activadores de Enzimas/química , Células HeLa , Humanos , Lactamas/síntesis química , Lactamas/química , Estructura Molecular , Péptidos Cíclicos/síntesis química , Péptidos Cíclicos/química , Proteolisis , Proteínas Tirosina Fosfatasas Clase 3 Similares a Receptores/metabolismo , Tripsina/química
16.
Sci Rep ; 7(1): 10593, 2017 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-28878220

RESUMEN

Bovine lactoferrin is a biglobular multifunctional iron binding glycoprotein that plays an important role in innate immunity against infections. We have previously demonstrated that selected peptides from bovine lactoferrin C-lobe are able to prevent both Influenza virus hemagglutination and cell infection. To deeper investigate the ability of lactoferrin derived peptides to inhibit Influenza virus infection, in this study we identified new bovine lactoferrin C-lobe derived sequences and corresponding synthetic peptides were synthesized and assayed to check their ability to prevent viral hemagglutination and infection. We identified three tetrapeptides endowed with broad anti-Influenza activity and able to inhibit viral infection in a concentration range femto- to picomolar. Our data indicate that these peptides may constitute a non-toxic tool for potential applications as anti-Influenza therapeutics.


Asunto(s)
Antivirales/farmacología , Lactoferrina/química , Orthomyxoviridae/efectos de los fármacos , Péptidos/farmacología , Animales , Antivirales/química , Línea Celular , Pruebas de Hemaglutinación , Hemaglutinación por Virus/efectos de los fármacos , Humanos , Gripe Humana/tratamiento farmacológico , Gripe Humana/inmunología , Gripe Humana/virología , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Péptidos/química , Conformación Proteica , Relación Estructura-Actividad
17.
Mol Pharm ; 13(11): 3876-3883, 2016 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-27676095

RESUMEN

The role of cell penetrating peptides (CPPs) has been challenged in recent years for drug delivery to ocular tissues for the targeting of both anterior and posterior segments. The enhancement of trans-corneal transport for anterior segment targeting is a very important issue possibly leading to important outcomes on efficacy and to the opportunity of topical administration of molecules with unfavorable penetration properties. The aim of the present work was the design and synthesis of new CPPs, deriving from the structure of PEP-1 peptide. Synthesized peptides were labeled with 5-carboxyfluorescein (5-FAM), and their diffusion behavior and distribution inside the cornea were evaluated by a validated ex vivo model and a confocal microscopy approach. Newly synthesized peptides showed similar corneal permeation profiles as PEP-1 (Papp = 0.75 ± 0.56 × 10-6 cm/s), about 2.6-fold higher than 5-FAM (Papp = 0.29 ± 0.08 × 10-6 cm/s) despite the higher molecular weight. Confocal microscopy experiments highlighted the tendency of PEP-1 and its derived peptides to localize in the intercellular space and/or in the plasma membrane. Noteworthy, using penetratin as positive control, a higher trans-corneal permeation (Papp = 6.18 ± 1.46 × 10-6 cm/s) was evidenced together with a diffusion by intracellular route and a different accumulation between wings and basal epithelial cells, probably depending on the stage of cell development. Finally, PEP-1 and pep-7 proved to be safe and well tolerated when tested on human conjuctival cell line.


Asunto(s)
Péptidos de Penetración Celular/metabolismo , Córnea/metabolismo , Animales , Proteínas Portadoras/metabolismo , Supervivencia Celular/fisiología , Cromatografía Líquida de Alta Presión , Cisteamina/análogos & derivados , Cisteamina/metabolismo , Fluoresceínas/química , Células HeLa , Humanos , Microscopía Confocal , Microondas , Péptidos/metabolismo , Porcinos
18.
Eur J Med Chem ; 124: 773-781, 2016 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-27639368

RESUMEN

We report the synthesis and antiviral activity of a new family of non-nucleoside antivirals, derived from the indole nucleus. Modifications of this template through Mannich and Friedel-Crafts reactions, coupled with nucleophilic displacement and reductive aminations led to 23 final derivatives, which were pharmacologically tested. Tryptamine derivative 17a was found to have a selective inhibitory activity against human varicella zoster virus (VZV) replication in vitro, being inactive against a variety of other DNA and RNA viruses. A structure-activity relationship (SAR) study showed that the presence of a biphenyl ethyl moiety and the acetylation at the amino group of tryptamine are a prerequisite for anti-VZV activity. The novel compound shows the same activity against thymidine kinase (TK)-competent (TK+) and TK-deficient (TK-) VZV strains, pointing to a novel mechanism of antiviral action.


Asunto(s)
Antivirales/química , Antivirales/farmacología , Herpesvirus Humano 3/efectos de los fármacos , Indoles/química , Indoles/farmacología , Replicación Viral/efectos de los fármacos , Línea Celular , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Diseño de Fármacos , Humanos , Estructura Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA