Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
J Cheminform ; 15(1): 84, 2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37726844

RESUMEN

Many recently proposed structure-based virtual screening models appear to be able to accurately distinguish high affinity binders from non-binders. However, several recent studies have shown that they often do so by exploiting ligand-specific biases in the dataset, rather than identifying favourable intermolecular interactions in the input protein-ligand complex. In this work we propose a novel approach for assessing the extent to which machine learning-based virtual screening models are able to identify the functional groups responsible for binding. To sidestep the difficulty in establishing the ground truth importance of each atom of a large scale set of protein-ligand complexes, we propose a protocol for generating synthetic data. Each ligand in the dataset is surrounded by a randomly sampled point cloud of pharmacophores, and the label assigned to the synthetic protein-ligand complex is determined by a 3-dimensional deterministic binding rule. This allows us to precisely quantify the ground truth importance of each atom and compare it to the model generated attributions. Using our generated datasets, we demonstrate that a recently proposed deep learning-based virtual screening model, PointVS, identified the most important functional groups with 39% more efficiency than a fingerprint-based random forest, suggesting that it would generalise more effectively to new examples. In addition, we found that ligand-specific biases, such as those present in widely used virtual screening datasets, substantially impaired the ability of all ML models to identify the most important functional groups. We have made our synthetic data generation framework available to facilitate the benchmarking of new virtual screening models. Code is available at https://github.com/tomhadfield95/synthVS .

2.
J Chem Inf Model ; 63(10): 2960-2974, 2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-37166179

RESUMEN

Over the past few years, many machine learning-based scoring functions for predicting the binding of small molecules to proteins have been developed. Their objective is to approximate the distribution which takes two molecules as input and outputs the energy of their interaction. Only a scoring function that accounts for the interatomic interactions involved in binding can accurately predict binding affinity on unseen molecules. However, many scoring functions make predictions based on data set biases rather than an understanding of the physics of binding. These scoring functions perform well when tested on similar targets to those in the training set but fail to generalize to dissimilar targets. To test what a machine learning-based scoring function has learned, input attribution, a technique for learning which features are important to a model when making a prediction on a particular data point, can be applied. If a model successfully learns something beyond data set biases, attribution should give insight into the important binding interactions that are taking place. We built a machine learning-based scoring function that aimed to avoid the influence of bias via thorough train and test data set filtering and show that it achieves comparable performance on the Comparative Assessment of Scoring Functions, 2016 (CASF-2016) benchmark to other leading methods. We then use the CASF-2016 test set to perform attribution and find that the bonds identified as important by PointVS, unlike those extracted from other scoring functions, have a high correlation with those found by a distance-based interaction profiler. We then show that attribution can be used to extract important binding pharmacophores from a given protein target when supplied with a number of bound structures. We use this information to perform fragment elaboration and see improvements in docking scores compared to using structural information from a traditional, data-based approach. This not only provides definitive proof that the scoring function has learned to identify some important binding interactions but also constitutes the first deep learning-based method for extracting structural information from a target for molecule design.


Asunto(s)
Aprendizaje Automático , Proteínas , Unión Proteica , Ligandos , Proteínas/química , Bases de Datos de Proteínas , Simulación del Acoplamiento Molecular
3.
J Chem Inf Model ; 60(8): 3722-3730, 2020 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-32701288

RESUMEN

Current deep learning methods for structure-based virtual screening take the structures of both the protein and the ligand as input but make little or no use of the protein structure when predicting ligand binding. Here, we show how a relatively simple method of data set augmentation forces such deep learning methods to take into account information from the protein. Models trained in this way are more generalizable (make better predictions on protein/ligand complexes from a different distribution to the training data). They also assign more meaningful importance to the protein and ligand atoms involved in binding. Overall, our results show that data set augmentation can help deep learning-based virtual screening to learn physical interactions rather than data set biases.


Asunto(s)
Aprendizaje Profundo , Ligandos , Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA