Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Micromachines (Basel) ; 15(4)2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38675291

RESUMEN

The restoration of sensory feedback is one of the current challenges in the field of prosthetics. This work, following the analysis of the various types of sensory feedback, aims to present a prototype device that could be used both for implantable applications to perform PNS and for wearable applications, performing TENS, to restore sensory feedback. The two systems are composed of three electronic boards that are presented in detail, as well as the bench tests carried out. To the authors' best knowledge, this work presents the first device that can be used in a dual scenario for restoring sensory feedback. Both the implantable and wearable versions respected the expected values regarding the stimulation parameters. In its implantable version, the proposed system allows simultaneous and independent stimulation of 30 channels. Furthermore, the capacity of the wearable version to elicit somatic sensations was evaluated on healthy participants demonstrating performance comparable with commercial solutions.

2.
Front Bioeng Biotechnol ; 10: 1034194, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36532581

RESUMEN

The lack of sensory feedback represents one of the main drawbacks of commercial upper limb prosthesis. Transcranial Focused Ultrasound Stimulation (tFUS) seems to be a valid non-invasive technique for restoring sensory feedback allowing to deliver acoustic energy to cortical sensory areas with high spatial resolution and depth penetration. This paper aims at studying in simulation the use of tFUS on cortical sensory areas to evaluate its effects in terms of latency ad firing rate of the cells response, for understanding if these parameters influence the safety and the efficacy of the stimulation. In this paper, in order to study the propagation of the ultrasound wave from the transducer to the cortical cells, a multiscale approach was implemented by building a macroscopic model, which estimates the pressure profile in a simplified 2D human head geometry, and coupling it with the SONIC microscale model, that describes the electrical behaviour of a cortical neuron. The influence of the stimulation parameters and of the skull thickness on the latency and the firing rate are evaluated and the obtained behaviour is linked to the sensory response obtained on human subjects. Results have shown that slight changes in the transducer position should not affect the efficacy of the stimulation; however, high skull thickness leads to lower cells activation. These results will be useful for evaluating safety and effectiveness of tFUS for sensory feedback in closed-loop prosthetic systems.

3.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 4712-4715, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-36086564

RESUMEN

Among the non-invasive methods employed for brain stimulation, trans cranial Focused Ultrasound Stimulation (tFUS) is the technique with the best penetration into the tissues and spatial resolution. The development of computational models of US propagation in brain tissue can be useful for estimating the behaviour of neural cells subjected to mechanical stimulus due to US. This paper aims at studying the neural cell response of a cortical Regular Spiking point neuron model, for different values of stimulus Duty Cycle (DC). The main goal is to use a multiscale approach to couple the results obtained from a macroscale simulation on wave propagation in tissue, with neuron model described by Hodgkin-Huxley equations to study latency and firing rate of the RS model. The obtained results showed that latency and firing rate have slight variations along the propagation direction of the US beam, in the focal region under the skull model, for different stimulus DC.


Asunto(s)
Ecoencefalografía , Cráneo , Encéfalo/fisiología , Simulación por Computador , Cabeza
4.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 6470-6474, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34892592

RESUMEN

Commercially available lower limb prostheses do not restore sensory feedback in amputees. Literature suggests that Transcutaneous Electrical Nerve Stimulation (TENS) is a valid non-invasive, somatotopic technique to elicit tactile sensations, but no studies have been performed to investigate the capability of discriminating stimulus intensity via TENS in the foot. The aim of the study is to investigate how TENS can be used in order to restore sensations in the lower limb with different levels of intensity. Two experimental protocols were developed and tested on 8 healthy subjects: Mapping protocol is addressed to a fully characterization of the evoked tactile sensations; the Stimulus Intensity Discrimination one aims at investigating the best stimulation parameter to modulate for allowing the recognition of different levels of intensity. The results showed how elicited sensations were mostly described as an almost natural and superficial. A variation of the referred sensation (from nothing to vibration) and its intensity (ρ=0.6431) occurred when a higher quantity of charge was injected. Among the three modulated stimulation parameters, Pulse Amplitude (PA) has the best performance in terms of success rate (90%) and has a statistically significant difference with Pulse Frequency (PF) (PPA-PF = 0.0073<0.016). In the future, PA modulation will be tested on a larger number of healthy subjects and on amputees.


Asunto(s)
Amputados , Miembros Artificiales , Estimulación Eléctrica Transcutánea del Nervio , Humanos , Extremidad Inferior , Tacto
5.
Front Neurosci ; 14: 534, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32625047

RESUMEN

The restoration of sensory feedback in amputees plays a fundamental role in the prosthesis control and in the communication on the afferent channel between hand and brain. The literature shows that transcutaneous electrical nerve stimulation (TENS) can be a promising non-invasive technique to elicit sensory feedback in amputees, especially in the lower limb through the phenomenon of apparent moving sensation (AMS). It consists of delivering a sensation that moves along a specific part of the body. This study proposes to use TENS to elicit tactile sensations and adopt AMS to reproduce moving sensations on the hand, such as those related to an object moving in the hand or slipping upward or downward. To this purpose, the developed experimental protocol consists of two phases: (i) the mapping of the evoked sensations and (ii) the generation of the AMS. In the latter phase, the pulse amplitude variation (PAV), the pulse width variation (PWV), and the interstimulus delay modulation (ISDM) methods were compared. For the comparative analysis, the Wilcoxon-Mann-Whitney test with Bonferroni correction (P < 0.016) was carried out on the success rate and on the ranking of methods expressed by the subjects. Results from the mapping protocol show that the delivered sensations were mostly described by the subjects as almost natural and superficial tingling. Results from the AMS protocol show that, for each movement direction, the success rate of ISDM method is higher than that of PWV and PAV and significantly higher than that of PAV for the ulnar-median direction. It recreates an AMS in the hand that effectively allows discriminating the type of sensation and distinguishing the movement direction. Moreover, ISDM was ranked by the subjects as the favorite method for recreating a well-defined and comfortable moving sensation only in the median-ulnar direction. For the ranking results, there was not a statistically significant difference among the methods. The experiments confirmed the good potential of recreating an AMS in the hand through TENS. This encourages to push forward this study on amputees and integrate it in the closed-loop control of a prosthetic system, in order to enable full control of grasp stability and prevent the objects from slippage.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA