Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
1.
bioRxiv ; 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39091730

RESUMEN

Both protein nanoparticle and mRNA vaccines were clinically de-risked during the COVID-19 pandemic1-6. These vaccine modalities have complementary strengths: antigen display on protein nanoparticles can enhance the magnitude, quality, and durability of antibody responses7-10, while mRNA vaccines can be rapidly manufactured11 and elicit antigen-specific CD4 and CD8 T cells12,13. Here we leverage a computationally designed icosahedral protein nanoparticle that was redesigned for optimal secretion from eukaryotic cells14 to develop an mRNA-launched nanoparticle vaccine for SARS-CoV-2. The nanoparticle, which displays 60 copies of a stabilized variant of the Wuhan-Hu-1 Spike receptor binding domain (RBD)15, formed monodisperse, antigenically intact assemblies upon secretion from transfected cells. An mRNA vaccine encoding the secreted RBD nanoparticle elicited 5- to 28-fold higher levels of neutralizing antibodies than an mRNA vaccine encoding membrane-anchored Spike, induced higher levels of CD8 T cells than the same immunogen when delivered as an adjuvanted protein nanoparticle, and protected mice from vaccine-matched and -mismatched SARS-CoV-2 challenge. Our data establish that delivering protein nanoparticle immunogens via mRNA vaccines can combine the benefits of each modality and, more broadly, highlight the utility of computational protein design in genetic immunization strategies.

2.
Virus Res ; 346: 199399, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38823688

RESUMEN

Coronaviruses have caused three severe epidemics since the start of the 21st century: SARS, MERS and COVID-19. The severity of the ongoing COVID-19 pandemic and increasing likelihood of future coronavirus outbreaks motivates greater understanding of factors leading to severe coronavirus disease. We screened ten strains from the Collaborative Cross mouse genetic reference panel and identified strains CC006/TauUnc (CC006) and CC044/Unc (CC044) as coronavirus-susceptible and resistant, respectively, as indicated by variable weight loss and lung congestion scores four days post-infection. We generated a genetic mapping population of 755 CC006xCC044 F2 mice and exposed the mice to one of three genetically distinct mouse-adapted coronaviruses: clade 1a SARS-CoV MA15 (n=391), clade 1b SARS-CoV-2 MA10 (n=274), and clade 2 HKU3-CoV MA (n=90). Quantitative trait loci (QTL) mapping in SARS-CoV MA15- and SARS-CoV-2 MA10-infected F2 mice identified genetic loci associated with disease severity. Specifically, we identified seven loci associated with variation in outcome following infection with either virus, including one, HrS43, that is present in both groups. Three of these QTL, including HrS43, were also associated with HKU3-CoV MA outcome. HrS43 overlaps with a QTL previously reported by our lab that is associated with SARS-CoV MA15 outcome in CC011xCC074 F2 mice and is also syntenic with a human chromosomal region associated with severe COVID-19 outcomes in humans GWAS. The results reported here provide: (a) additional support for the involvement of this locus in SARS-CoV MA15 infection, (b) the first conclusive evidence that this locus is associated with susceptibility across the Sarbecovirus subgenus, and (c) demonstration of the relevance of mouse models in the study of coronavirus disease susceptibility in humans.


Asunto(s)
COVID-19 , Modelos Animales de Enfermedad , Sitios de Carácter Cuantitativo , SARS-CoV-2 , Animales , Ratones , SARS-CoV-2/genética , COVID-19/virología , Susceptibilidad a Enfermedades , Humanos , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/genética , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/patogenicidad , Mapeo Cromosómico , Infecciones por Coronavirus/virología , Femenino , Ratones de Colaboración Cruzada/genética , Predisposición Genética a la Enfermedad , Masculino
3.
Nat Commun ; 15(1): 5496, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38944664

RESUMEN

Evolution of SARS-CoV-2 alters the antigenicity of the immunodominant spike (S) receptor-binding domain and N-terminal domain, undermining the efficacy of vaccines and antibody therapies. To overcome this challenge, we set out to develop a vaccine focusing antibody responses on the highly conserved but metastable S2 subunit, which folds as a spring-loaded fusion machinery. We describe a strategy for prefusion-stabilization and high yield recombinant production of SARS-CoV-2 S2 trimers with native structure and antigenicity. We demonstrate that our design strategy is broadly generalizable to sarbecoviruses, as exemplified with the SARS-CoV-1 (clade 1a) and PRD-0038 (clade 3) S2 subunits. Immunization of mice with a prefusion-stabilized SARS-CoV-2 S2 trimer elicits broadly reactive sarbecovirus antibodies and neutralizing antibody titers of comparable magnitude against Wuhan-Hu-1 and the immune evasive XBB.1.5 variant. Vaccinated mice were protected from weight loss and disease upon challenge with XBB.1.5, providing proof-of-principle for fusion machinery sarbecovirus vaccines.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19 , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Animales , Ratones , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , SARS-CoV-2/inmunología , Humanos , COVID-19/prevención & control , COVID-19/inmunología , COVID-19/virología , Femenino , Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/administración & dosificación , Ratones Endogámicos BALB C
4.
Sci Transl Med ; 16(748): eadj4504, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38776389

RESUMEN

Despite the wide availability of several safe and effective vaccines that prevent severe COVID-19, the persistent emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) that can evade vaccine-elicited immunity remains a global health concern. In addition, the emergence of SARS-CoV-2 VOCs that can evade therapeutic monoclonal antibodies underscores the need for additional, variant-resistant treatment strategies. Here, we characterize the antiviral activity of GS-5245, obeldesivir (ODV), an oral prodrug of the parent nucleoside GS-441524, which targets the highly conserved viral RNA-dependent RNA polymerase (RdRp). We show that GS-5245 is broadly potent in vitro against alphacoronavirus HCoV-NL63, SARS-CoV, SARS-CoV-related bat-CoV RsSHC014, Middle East respiratory syndrome coronavirus (MERS-CoV), SARS-CoV-2 WA/1, and the highly transmissible SARS-CoV-2 BA.1 Omicron variant. Moreover, in mouse models of SARS-CoV, SARS-CoV-2 (WA/1 and Omicron B1.1.529), MERS-CoV, and bat-CoV RsSHC014 pathogenesis, we observed a dose-dependent reduction in viral replication, body weight loss, acute lung injury, and pulmonary function with GS-5245 therapy. Last, we demonstrate that a combination of GS-5245 and main protease (Mpro) inhibitor nirmatrelvir improved outcomes in vivo against SARS-CoV-2 compared with the single agents. Together, our data support the clinical evaluation of GS-5245 against coronaviruses that cause or have the potential to cause human disease.


Asunto(s)
Antivirales , Profármacos , SARS-CoV-2 , Animales , SARS-CoV-2/efectos de los fármacos , Profármacos/farmacología , Profármacos/uso terapéutico , Antivirales/farmacología , Antivirales/uso terapéutico , Humanos , Ratones , Administración Oral , Chlorocebus aethiops , Células Vero , Tratamiento Farmacológico de COVID-19 , COVID-19/virología , Replicación Viral/efectos de los fármacos , Nucleósidos/farmacología , Nucleósidos/uso terapéutico , Nucleósidos/química , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/virología , Femenino , Modelos Animales de Enfermedad
5.
Nat Commun ; 15(1): 3738, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702297

RESUMEN

Whole virus-based inactivated SARS-CoV-2 vaccines adjuvanted with aluminum hydroxide have been critical to the COVID-19 pandemic response. Although these vaccines are protective against homologous coronavirus infection, the emergence of novel variants and the presence of large zoonotic reservoirs harboring novel heterologous coronaviruses provide significant opportunities for vaccine breakthrough, which raises the risk of adverse outcomes like vaccine-associated enhanced respiratory disease. Here, we use a female mouse model of coronavirus disease to evaluate inactivated vaccine performance against either homologous challenge with SARS-CoV-2 or heterologous challenge with a bat-derived coronavirus that represents a potential emerging disease threat. We show that inactivated SARS-CoV-2 vaccines adjuvanted with aluminum hydroxide can cause enhanced respiratory disease during heterologous infection, while use of an alternative adjuvant does not drive disease and promotes heterologous viral clearance. In this work, we highlight the impact of adjuvant selection on inactivated vaccine safety and efficacy against heterologous coronavirus infection.


Asunto(s)
Hidróxido de Aluminio , Vacunas contra la COVID-19 , COVID-19 , SARS-CoV-2 , Vacunas de Productos Inactivados , Animales , Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/administración & dosificación , Femenino , COVID-19/prevención & control , COVID-19/inmunología , COVID-19/virología , Ratones , Vacunas de Productos Inactivados/inmunología , SARS-CoV-2/inmunología , Hidróxido de Aluminio/administración & dosificación , Modelos Animales de Enfermedad , Adyuvantes Inmunológicos/administración & dosificación , Adyuvantes de Vacunas , Anticuerpos Antivirales/inmunología , Ratones Endogámicos BALB C , Humanos , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/inmunología
6.
bioRxiv ; 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-38559009

RESUMEN

The merbecovirus subgenus of coronaviruses includes Middle East Respiratory Syndrome Coronavirus (MERS-CoV), a zoonotic pathogen transmitted from dromedary camels to humans that causes severe respiratory disease. Viral discovery efforts have uncovered hundreds of merbecoviruses in different species across multiple continents, but few have been studied under laboratory conditions, leaving basic questions regarding their human threat potential unresolved. Viral entry into host cells is a critical step for transmission between hosts. Here, a scalable approach that assesses novel merbecovirus cell entry was developed and used to evaluate receptor use across the entire merbecovirus subgenus. Merbecoviruses are sorted into clades based on the receptor-binding domain of the spike glycoprotein. Receptor tropism is clade-specific, with the clade including MERS-CoV using DPP4 and multiple clades using ACE2, including HKU5 bat coronaviruses. Mutational analysis identified possible structural limitations to HKU5 adaptability and a cryo-EM structure of the HKU5-20s spike trimer revealed only 'down' RBDs.

7.
Sci Data ; 11(1): 328, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565538

RESUMEN

Human infections caused by viral pathogens trigger a complex gamut of host responses that limit disease, resolve infection, generate immunity, and contribute to severe disease or death. Here, we present experimental methods and multi-omics data capture approaches representing the global host response to infection generated from 45 individual experiments involving human viruses from the Orthomyxoviridae, Filoviridae, Flaviviridae, and Coronaviridae families. Analogous experimental designs were implemented across human or mouse host model systems, longitudinal samples were collected over defined time courses, and global multi-omics data (transcriptomics, proteomics, metabolomics, and lipidomics) were acquired by microarray, RNA sequencing, or mass spectrometry analyses. For comparison, we have included transcriptomics datasets from cells treated with type I and type II human interferon. Raw multi-omics data and metadata were deposited in public repositories, and we provide a central location linking the raw data with experimental metadata and ready-to-use, quality-controlled, statistically processed multi-omics datasets not previously available in any public repository. This compendium of infection-induced host response data for reuse will be useful for those endeavouring to understand viral disease pathophysiology and network biology.


Asunto(s)
Multiómica , Virosis , Virus , Animales , Humanos , Ratones , Perfilación de la Expresión Génica/métodos , Metabolómica , Proteómica/métodos , Virosis/inmunología , Interacciones Huésped-Patógeno
8.
Mol Ther ; 32(6): 1790-1804, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38605519

RESUMEN

The role of CD8+ T cells in SARS-CoV-2 pathogenesis or mRNA-LNP vaccine-induced protection from lethal COVID-19 is unclear. Using mouse-adapted SARS-CoV-2 virus (MA30) in C57BL/6 mice, we show that CD8+ T cells are unnecessary for the intrinsic resistance of female or the susceptibility of male mice to lethal SARS-CoV-2 infection. Also, mice immunized with a di-proline prefusion-stabilized full-length SARS-CoV-2 Spike (S-2P) mRNA-LNP vaccine, which induces Spike-specific antibodies and CD8+ T cells specific for the Spike-derived VNFNFNGL peptide, are protected from SARS-CoV-2 infection-induced lethality and weight loss, while mice vaccinated with mRNA-LNPs encoding only VNFNFNGL are protected from lethality but not weight loss. CD8+ T cell depletion ablates protection in VNFNFNGL but not in S-2P mRNA-LNP-vaccinated mice. Therefore, mRNA-LNP vaccine-induced CD8+ T cells are dispensable when protective antibodies are present but essential for survival in their absence. Hence, vaccine-induced CD8+ T cells may be critical to protect against SARS-CoV-2 variants that mutate epitopes targeted by protective antibodies.


Asunto(s)
Anticuerpos Antivirales , Linfocitos T CD8-positivos , Vacunas contra la COVID-19 , COVID-19 , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Animales , Linfocitos T CD8-positivos/inmunología , Ratones , SARS-CoV-2/inmunología , COVID-19/inmunología , COVID-19/prevención & control , Femenino , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Vacunas contra la COVID-19/inmunología , Masculino , Anticuerpos Antivirales/inmunología , Ratones Endogámicos C57BL , Humanos , Modelos Animales de Enfermedad
9.
Cell Rep ; 43(5): 114127, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38652660

RESUMEN

Ebola virus (EBOV), a major global health concern, causes severe, often fatal EBOV disease (EVD) in humans. Host genetic variation plays a critical role, yet the identity of host susceptibility loci in mammals remains unknown. Using genetic reference populations, we generate an F2 mapping cohort to identify host susceptibility loci that regulate EVD. While disease-resistant mice display minimal pathogenesis, susceptible mice display severe liver pathology consistent with EVD-like disease and transcriptional signatures associated with inflammatory and liver metabolic processes. A significant quantitative trait locus (QTL) for virus RNA load in blood is identified in chromosome (chr)8, and a severe clinical disease and mortality QTL is mapped to chr7, which includes the Trim5 locus. Using knockout mice, we validate the Trim5 locus as one potential driver of liver failure and mortality after infection. The identification of susceptibility loci provides insight into molecular genetic mechanisms regulating EVD progression and severity, potentially informing therapeutics and vaccination strategies.


Asunto(s)
Ebolavirus , Predisposición Genética a la Enfermedad , Fiebre Hemorrágica Ebola , Sitios de Carácter Cuantitativo , Animales , Fiebre Hemorrágica Ebola/virología , Fiebre Hemorrágica Ebola/genética , Fiebre Hemorrágica Ebola/patología , Sitios de Carácter Cuantitativo/genética , Ebolavirus/patogenicidad , Ebolavirus/genética , Ratones , Ratones Noqueados , Mapeo Cromosómico , Hígado/patología , Hígado/metabolismo , Humanos , Ratones Endogámicos C57BL , Femenino , Masculino
10.
bioRxiv ; 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38558973

RESUMEN

Middle East respiratory syndrome coronavirus (MERS-CoV) is a zoonotic betacoronavirus that causes severe and often lethal respiratory illness in humans. The MERS-CoV spike (S) protein is the viral fusogen and the target of neutralizing antibodies, and has therefore been the focus of vaccine design efforts. Currently there are no licensed vaccines against MERS-CoV and only a few candidates have advanced to Phase I clinical trials. Here we developed MERS-CoV vaccines utilizing a computationally designed protein nanoparticle platform that has generated safe and immunogenic vaccines against various enveloped viruses, including a licensed vaccine for SARS-CoV-2. Two-component protein nanoparticles displaying MERS-CoV S-derived antigens induced robust neutralizing antibody responses and protected mice against challenge with mouse-adapted MERS-CoV. Electron microscopy polyclonal epitope mapping and serum competition assays revealed the specificities of the dominant antibody responses elicited by immunogens displaying the prefusion-stabilized S-2P trimer, receptor binding domain (RBD), or N-terminal domain (NTD). An RBD nanoparticle vaccine elicited antibodies targeting multiple non-overlapping epitopes in the RBD, whereas anti-NTD antibodies elicited by the S-2P- and NTD-based immunogens converged on a single antigenic site. Our findings demonstrate the potential of two-component nanoparticle vaccine candidates for MERS-CoV and suggest that this platform technology could be broadly applicable to betacoronavirus vaccine development.

11.
Virus Res ; 344: 199357, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38508400

RESUMEN

Coronavirus (CoV) cause considerable morbidity and mortality in humans and other mammals, as evidenced by the emergence of Severe Acute Respiratory CoV (SARS-CoV) in 2003, Middle East Respiratory CoV (MERS-CoV) in 2012, and SARS-CoV-2 in 2019. Although poorly characterized, natural genetic variation in human and other mammals modulate virus pathogenesis, as reflected by the spectrum of clinical outcomes ranging from asymptomatic infections to lethal disease. Using multiple human epidemic and zoonotic Sarbecoviruses, coupled with murine Collaborative Cross genetic reference populations, we identify several dozen quantitative trait loci that regulate SARS-like group-2B CoV pathogenesis and replication. Under a Chr4 QTL, we deleted a candidate interferon stimulated gene, Trim14 which resulted in enhanced SARS-CoV titers and clinical disease, suggesting an antiviral role during infection. Importantly, about 60 % of the murine QTL encode susceptibility genes identified as priority candidates from human genome-wide association studies (GWAS) studies after SARS-CoV-2 infection, suggesting that similar selective forces have targeted analogous genes and pathways to regulate Sarbecovirus disease across diverse mammalian hosts. These studies provide an experimental platform in rodents to investigate the molecular-genetic mechanisms by which potential cross mammalian susceptibility loci and genes regulate type-specific and cross-SARS-like group 2B CoV replication, immunity, and pathogenesis in rodent models. Our study also provides a paradigm for identifying susceptibility loci for other highly heterogeneous and virulent viruses that sporadically emerge from zoonotic reservoirs to plague human and animal populations.


Asunto(s)
Sitios de Carácter Cuantitativo , Animales , Humanos , Ratones , SARS-CoV-2/genética , Replicación Viral , Estudio de Asociación del Genoma Completo , COVID-19/virología , Proteínas de Motivos Tripartitos/genética , Infecciones por Coronavirus/virología , Infecciones por Coronavirus/genética , Modelos Animales de Enfermedad
12.
iScience ; 27(3): 109103, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38361611

RESUMEN

The response to infection is generally heterogeneous and diverse, with some individuals remaining asymptomatic while others present with severe disease or a diverse range of symptoms. Here, we address the role of host genetics on immune phenotypes and clinical outcomes following viral infection by studying genetically diverse mice from the Collaborative Cross (CC), allowing for use of a small animal model with controlled genetic diversity while maintaining genetic replicates. We demonstrate variation by deeply profiling a broad range of innate and adaptive immune cell phenotypes at steady-state in 63 genetically distinct CC mouse strains and link baseline immune signatures with virologic and clinical disease outcomes following infection of mice with herpes simplex virus 2 (HSV-2) or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This work serves as a resource for CC strain selection based on steady-state immune phenotypes or disease presentation upon viral infection, and further, points to possible pre-infection immune correlates of survival and early viral clearance upon infection.

13.
Nat Commun ; 14(1): 7897, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38036525

RESUMEN

Immune responses to SARS-CoV-2 primarily target the receptor binding domain of the spike protein, which continually mutates to escape acquired immunity. Other regions in the spike S2 subunit, such as the stem helix and the segment encompassing residues 815-823 adjacent to the fusion peptide, are highly conserved across sarbecoviruses and are recognized by broadly reactive antibodies, providing hope that vaccines targeting these epitopes could offer protection against both current and emergent viruses. Here we employ computational modeling to design scaffolded immunogens that display the spike 815-823 peptide and the stem helix epitopes without the distracting and immunodominant receptor binding domain. These engineered proteins bind with high affinity and specificity to the mature and germline versions of previously identified broadly protective human antibodies. Epitope scaffolds interact with both sera and isolated monoclonal antibodies with broadly reactivity from individuals with pre-existing SARS-CoV-2 immunity. When used as immunogens, epitope scaffolds elicit sera with broad betacoronavirus reactivity and protect as "boosts" against live virus challenge in mice, illustrating their potential as components of a future pancoronavirus vaccine.


Asunto(s)
Anticuerpos Antivirales , SARS-CoV-2 , Humanos , Animales , Ratones , Epítopos , Epítopos Inmunodominantes , Péptidos , Glicoproteína de la Espiga del Coronavirus , Anticuerpos Neutralizantes
14.
Sci Immunol ; 8(89): eadl5685, 2023 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-37931035

RESUMEN

Non-antigen vaccines that broadly activate innate immune responses reduce mortality against hospital-acquired bacterial and fungal pathogens.


Asunto(s)
Infección Hospitalaria , Vacunas , Humanos , Inmunidad Entrenada , Inmunidad Innata , Hospitales
15.
Cell Rep ; 42(10): 113248, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37858337

RESUMEN

The emergence of three highly pathogenic human coronaviruses-severe acute respiratory syndrome coronavirus (SARS-CoV) in 2003, Middle Eastern respiratory syndrome (MERS)-CoV in 2012, and SARS-CoV-2 in 2019-underlines the need to develop broadly active vaccines against the Merbecovirus and Sarbecovirus betacoronavirus subgenera. While SARS-CoV-2 vaccines protect against severe COVID-19, they do not protect against other sarbecoviruses or merbecoviruses. Here, we vaccinate mice with a trivalent sortase-conjugate nanoparticle (scNP) vaccine containing the SARS-CoV-2, RsSHC014, and MERS-CoV receptor-binding domains (RBDs), which elicited live-virus neutralizing antibody responses. The trivalent RBD scNP elicited serum neutralizing antibodies against bat zoonotic Wuhan Institute of Virology-1 (WIV-1)-CoV, SARS-CoV, SARS-CoV-2 BA.1, SARS-CoV-2 XBB.1.5, and MERS-CoV live viruses. The monovalent SARS-CoV-2 RBD scNP vaccine only protected against Sarbecovirus challenge, whereas the trivalent RBD scNP vaccine protected against both Merbecovirus and Sarbecovirus challenge in highly pathogenic and lethal mouse models. This study demonstrates proof of concept for a single pan-sarbecovirus/pan-merbecovirus vaccine that protects against three highly pathogenic human coronaviruses spanning two betacoronavirus subgenera.


Asunto(s)
Coronavirus del Síndrome Respiratorio de Oriente Medio , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo , Animales , Humanos , Ratones , Vacunas contra la COVID-19 , Anticuerpos Antivirales , Anticuerpos Neutralizantes , SARS-CoV-2
16.
Sci Transl Med ; 15(715): eadg5567, 2023 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-37756379

RESUMEN

The repeated emergence of zoonotic human betacoronaviruses (ß-CoVs) dictates the need for broad therapeutics and conserved epitope targets for countermeasure design. Middle East respiratory syndrome (MERS)-related coronaviruses (CoVs) remain a pressing concern for global health preparedness. Using metagenomic sequence data and CoV reverse genetics, we recovered a full-length wild-type MERS-like BtCoV/li/GD/2014-422 (BtCoV-422) recombinant virus, as well as two reporter viruses, and evaluated their human emergence potential and susceptibility to currently available countermeasures. Similar to MERS-CoV, BtCoV-422 efficiently used human and other mammalian dipeptidyl peptidase protein 4 (DPP4) proteins as entry receptors and an alternative DPP4-independent infection route in the presence of exogenous proteases. BtCoV-422 also replicated efficiently in primary human airway, lung endothelial, and fibroblast cells, although less efficiently than MERS-CoV. However, BtCoV-422 shows minor signs of infection in 288/330 human DPP4 transgenic mice. Several broad CoV antivirals, including nucleoside analogs and 3C-like/Mpro protease inhibitors, demonstrated potent inhibition against BtCoV-422 in vitro. Serum from mice that received a MERS-CoV mRNA vaccine showed reduced neutralizing activity against BtCoV-422. Although most MERS-CoV-neutralizing monoclonal antibodies (mAbs) had limited activity, one anti-MERS receptor binding domain mAb, JC57-11, neutralized BtCoV-422 potently. A cryo-electron microscopy structure of JC57-11 in complex with BtCoV-422 spike protein revealed the mechanism of cross-neutralization involving occlusion of the DPP4 binding site, highlighting its potential as a broadly neutralizing mAb for group 2c CoVs that use DPP4 as a receptor. These studies provide critical insights into MERS-like CoVs and provide candidates for countermeasure development.


Asunto(s)
Quirópteros , Infecciones por Coronavirus , Coronavirus del Síndrome Respiratorio de Oriente Medio , Humanos , Animales , Ratones , Dipeptidil Peptidasa 4/genética , Dipeptidil Peptidasa 4/metabolismo , Microscopía por Crioelectrón , Anticuerpos Monoclonales/metabolismo
17.
Nat Microbiol ; 8(10): 1820-1833, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37749254

RESUMEN

The pathogenic and cross-species transmission potential of SARS-CoV-2-related coronaviruses (CoVs) remain poorly characterized. Here we recovered a wild-type pangolin (Pg) CoV GD strain including derivatives encoding reporter genes using reverse genetics. In primary human cells, PgCoV replicated efficiently but with reduced fitness and showed less efficient transmission via airborne route compared with SARS-CoV-2 in hamsters. PgCoV was potently inhibited by US Food and Drug Administration approved drugs, and neutralized by COVID-19 patient sera and SARS-CoV-2 therapeutic antibodies in vitro. A pan-Sarbecovirus antibody and SARS-CoV-2 S2P recombinant protein vaccine protected BALB/c mice from PgCoV infection. In K18-hACE2 mice, PgCoV infection caused severe clinical disease, but mice were protected by a SARS-CoV-2 human antibody. Efficient PgCoV replication in primary human cells and hACE2 mice, coupled with a capacity for airborne spread, highlights an emergence potential. However, low competitive fitness, pre-immune humans and the benefit of COVID-19 countermeasures should impede its ability to spread globally in human populations.


Asunto(s)
COVID-19 , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo , Cricetinae , Humanos , Animales , Ratones , Especificidad del Huésped , Pangolines , SARS-CoV-2/genética , COVID-19/prevención & control , Anticuerpos Antivirales , Vacunas contra la COVID-19 , Ratones Endogámicos BALB C
18.
bioRxiv ; 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37425890

RESUMEN

Despite the wide availability of several safe and effective vaccines that can prevent severe COVID-19 disease, the emergence of SARS-CoV-2 variants of concern (VOC) that can partially evade vaccine immunity remains a global health concern. In addition, the emergence of highly mutated and neutralization-resistant SARS-CoV-2 VOCs such as BA.1 and BA.5 that can partially or fully evade (1) many therapeutic monoclonal antibodies in clinical use underlines the need for additional effective treatment strategies. Here, we characterize the antiviral activity of GS-5245, Obeldesivir (ODV), an oral prodrug of the parent nucleoside GS-441524, which targets the highly conserved RNA-dependent viral RNA polymerase (RdRp). Importantly, we show that GS-5245 is broadly potent in vitro against alphacoronavirus HCoV-NL63, severe acute respiratory syndrome coronavirus (SARS-CoV), SARS-CoV-related Bat-CoV RsSHC014, Middle East Respiratory Syndrome coronavirus (MERS-CoV), SARS-CoV-2 WA/1, and the highly transmissible SARS-CoV-2 BA.1 Omicron variant in vitro and highly effective as antiviral therapy in mouse models of SARS-CoV, SARS-CoV-2 (WA/1), MERS-CoV and Bat-CoV RsSHC014 pathogenesis. In all these models of divergent coronaviruses, we observed protection and/or significant reduction of disease metrics such as weight loss, lung viral replication, acute lung injury, and degradation in pulmonary function in GS-5245-treated mice compared to vehicle controls. Finally, we demonstrate that GS-5245 in combination with the main protease (Mpro) inhibitor nirmatrelvir had increased efficacy in vivo against SARS-CoV-2 compared to each single agent. Altogether, our data supports the continuing clinical evaluation of GS-5245 in humans infected with COVID-19, including as part of a combination antiviral therapy, especially in populations with the most urgent need for more efficacious and durable interventions.

19.
bioRxiv ; 2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37293083

RESUMEN

The emergence of three distinct highly pathogenic human coronaviruses - SARS-CoV in 2003, MERS-CoV in 2012, and SARS-CoV-2 in 2019 - underlines the need to develop broadly active vaccines against the Merbecovirus and Sarbecovirus betacoronavirus subgenera. While SARS-CoV-2 vaccines are highly protective against severe COVID-19 disease, they do not protect against other sarbecoviruses or merbecoviruses. Here, we vaccinate mice with a trivalent sortase-conjugate nanoparticle (scNP) vaccine containing the SARS-CoV-2, RsSHC014, and MERS-CoV receptor binding domains (RBDs), which elicited live-virus neutralizing antibody responses and broad protection. Specifically, a monovalent SARS-CoV-2 RBD scNP vaccine only protected against sarbecovirus challenge, whereas the trivalent RBD scNP vaccine protected against both merbecovirus and sarbecovirus challenge in highly pathogenic and lethal mouse models. Moreover, the trivalent RBD scNP elicited serum neutralizing antibodies against SARS-CoV, MERS-CoV and SARS-CoV-2 BA.1 live viruses. Our findings show that a trivalent RBD nanoparticle vaccine displaying merbecovirus and sarbecovirus immunogens elicits immunity that broadly protects mice against disease. This study demonstrates proof-of-concept for a single pan-betacoronavirus vaccine to protect against three highly pathogenic human coronaviruses spanning two betacoronavirus subgenera.

20.
J Infect Dis ; 228(Suppl 7): S554-S558, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37102262

RESUMEN

Ebola virus disease (EVD) has resulted in the death of over 15 000 people since its discovery in 1976. At least 1 incident of re-emergence of EVD has been associated with persistent male reproductive tract infection in a patient surviving EVD greater than 500 days prior. To date, animal models of Ebola virus (EBOV) infection have failed to fully characterize the pathogenesis of reproductive tract infection. Furthermore, no animal model of sexual transmission of EBOV exists. In this study, we describe a roadmap to modeling sexual transmission of EBOV using a mouse-adapted EBOV isolate in immunocompetent male mice and female Ifnar-/- mice.


Asunto(s)
Ebolavirus , Fiebre Hemorrágica Ebola , Infecciones del Sistema Genital , Animales , Humanos , Masculino , Femenino , Modelos Animales de Enfermedad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA