Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 172
Filtrar
1.
Signal Transduct Target Ther ; 9(1): 103, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38664368

RESUMEN

Obesity is one of the diseases with severe health consequences and rapidly increasing worldwide prevalence. Understanding the complex network of food intake and energy balance regulation is an essential prerequisite for pharmacological intervention with obesity. G protein-coupled receptors (GPCRs) are among the main modulators of metabolism and energy balance. They, for instance, regulate appetite and satiety in certain hypothalamic neurons, as well as glucose and lipid metabolism and hormone secretion from adipocytes. Mutations in some GPCRs, such as the melanocortin receptor type 4 (MC4R), have been associated with early-onset obesity. Here, we identified the adhesion GPCR latrophilin 1 (ADGRL1/LPHN1) as a member of the regulating network governing food intake and the maintenance of energy balance. Deficiency of the highly conserved receptor in mice results in increased food consumption and severe obesity, accompanied by dysregulation of glucose homeostasis. Consistently, we identified a partially inactivating mutation in human ADGRL1/LPHN1 in a patient suffering from obesity. Therefore, we propose that LPHN1 dysfunction is a risk factor for obesity development.


Asunto(s)
Obesidad , Receptores Acoplados a Proteínas G , Receptores de Péptidos , Animales , Humanos , Ratones , Metabolismo Energético/genética , Glucosa/metabolismo , Glucosa/genética , Obesidad/genética , Obesidad/metabolismo , Obesidad/patología , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Péptidos/genética , Receptores de Péptidos/metabolismo
2.
Nucleic Acids Res ; 52(7): 3823-3836, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38421639

RESUMEN

Alternative splicing and multiple transcription start and termination sites can produce a diverse repertoire of mRNA transcript variants from a given gene. While the full picture of the human transcriptome is still incomplete, publicly available RNA datasets have enabled the assembly of transcripts. Using publicly available deep sequencing data from 927 human samples across 48 tissues, we quantified known and new transcript variants, provide an interactive, browser-based application Splice-O-Mat and demonstrate its relevance using adhesion G protein-coupled receptors (aGPCRs) as an example. On average, 24 different transcript variants were detected for each of the 33 human aGPCR genes, and several dominant transcript variants were not yet annotated. Variable transcription starts and complex exon-intron structures encode a flexible protein domain architecture of the N- and C termini and the seven-transmembrane helix domain (7TMD). Notably, we discovered the first GPCR (ADGRG7/GPR128) with eight transmembrane helices. Both the N- and C terminus of this aGPCR were intracellularly oriented, anchoring the N terminus in the plasma membrane. Moreover, the assessment of tissue-specific transcript variants, also for other gene classes, in our application may change the evaluation of disease-causing mutations, as their position in different transcript variants may explain tissue-specific phenotypes.


Asunto(s)
Empalme Alternativo , Secuenciación de Nucleótidos de Alto Rendimiento , Receptores Acoplados a Proteínas G , Humanos , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/química , Transcriptoma/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Mensajero/química , Exones/genética , Dominios Proteicos
3.
Matrix Biol ; 128: 1-10, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38378098

RESUMEN

The extracellular matrix (ECM) is a network of macromolecules that presents a vital scaffold for cells and enables multiple ways of cellular communication. Thus, it is essential for many physiological processes such as development, tissue morphogenesis, homeostasis, the shape and partially the size of the body and its organs. To ensure these, the composition of the ECM is tissue-specific and highly dynamic. ECM homeostasis is therefore tightly controlled by several mechanisms. Here, we show that FMI-1, the homolog of the Adhesion GPCR Flamingo/CELSR/ADGRC in the nematode Caenorhabditis elegans, modulates the composition of the ECM by controlling the production both of ECM molecules such as collagens and also of ECM modifying enzymes. Thereby, FMI-1 affects the morphology and functionality of the nematode´s cuticle, which is mainly composed of ECM, and also modulates the body size. Mechanistic analyses highlight the fact that FMI-1 exerts its function from neurons non-cell autonomously (trans) solely via its extracellular N terminus. Our data support a model, by which the activity of the receptor, which has a well-described role in the planar cell polarity (PCP) pathway, involves the PCP molecule VANG-1, but seems to be independent of the DBL-1/BMP pathway.


Asunto(s)
Cadherinas , Proteínas de Caenorhabditis elegans , Animales , Tamaño Corporal , Cadherinas/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiología , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Comunicación Celular , Matriz Extracelular/metabolismo
4.
Commun Biol ; 7(1): 104, 2024 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-38228886

RESUMEN

Glucose homeostasis is maintained by hormones secreted from different cell types of the pancreatic islets and controlled by manifold input including signals mediated through G protein-coupled receptors (GPCRs). RNA-seq analyses revealed expression of numerous GPCRs in mouse and human pancreatic islets, among them Gpr116/Adgrf5. GPR116 is an adhesion GPCR mainly found in lung and required for surfactant secretion. Here, we demonstrate that GPR116 is involved in the somatostatin release from pancreatic delta cells using a whole-body as well as a cell-specific knock-out mouse model. Interestingly, the whole-body GPR116 deficiency causes further changes such as decreased beta-cell mass, lower number of small islets, and reduced pancreatic insulin content. Glucose homeostasis in global GPR116-deficient mice is maintained by counter-acting mechanisms modulating insulin degradation. Our data highlight an important function of GPR116 in controlling glucose homeostasis.


Asunto(s)
Islotes Pancreáticos , Humanos , Animales , Ratones , Islotes Pancreáticos/metabolismo , Somatostatina/metabolismo , Insulina/metabolismo , Pulmón/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Ratones Noqueados , Glucosa/metabolismo
5.
J Hered ; 115(2): 212-220, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38245832

RESUMEN

The dugong (Dugong dugon) is a marine mammal widely distributed throughout the Indo-Pacific and the Red Sea, with a Vulnerable conservation status, and little is known about many of the more peripheral populations, some of which are thought to be close to extinction. We present a de novo high-quality genome assembly for the dugong from an individual belonging to the well-monitored Moreton Bay population in Queensland, Australia. Our assembly uses long-read PacBio HiFi sequencing and Omni-C data following the Vertebrate Genome Project pipeline to reach chromosome-level contiguity (24 chromosome-level scaffolds; 3.16 Gbp) and high completeness (97.9% complete BUSCOs). We observed relatively high genome-wide heterozygosity, which likely reflects historical population abundance before the last interglacial period, approximately 125,000 yr ago. Demographic inference suggests that dugong populations began declining as sea levels fell after the last interglacial period, likely a result of population fragmentation and habitat loss due to the exposure of seagrass meadows. We find no evidence for ongoing recent inbreeding in this individual. However, runs of homozygosity indicate some past inbreeding. Our draft genome assembly will enable range-wide assessments of genetic diversity and adaptation, facilitate effective management of dugong populations, and allow comparative genomics analyses including with other sirenians, the oldest marine mammal lineage.


Asunto(s)
Caniformia , Dugong , Animales , Australia , Ecosistema , Océano Índico , Cetáceos , Cromosomas
6.
Pharmacol Res ; 197: 106971, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38032292

RESUMEN

The class B2 of GPCRs known as adhesion G protein-coupled receptors (aGPCRs) has come under increasing academic and nonacademic research focus over the past decade due to their physiological importance as mechano-sensors in cell-cell and cell-matrix contexts. A major advance in understanding signal transduction of aGPCRs was achieved by the identification of the so-called Stachel sequence, which acts as an intramolecular agonist at the interface between the N terminus (Nt) and the seven-transmembrane helix domain (7TMD). Distinct extracellular signals received by the Nt are integrated at the Stachel into structural changes of the 7TMD towards an active state conformation. Until recently, little information was available on how the activation process of aGPCRs is realized at the molecular level. In the past three years several structures of the 7TMD plus the Stachel in complex with G proteins have been determined, which provide new insights into the architecture and molecular function of this receptor class. Herein, we review this structural information to extract common and distinct aGPCR features with particular focus on the Stachel binding site within the 7TMD. Our analysis extends the current view of aGPCR activation and exposes similarities and differences not only between diverse aGPCR members, but also compared to other GPCR classes.


Asunto(s)
Evolución Biológica , Transducción de Señal , Sitios de Unión , Dominios Proteicos
7.
J Biol Chem ; 299(12): 105356, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37863265

RESUMEN

Adhesion G protein-coupled receptors (aGPCRs) feature large extracellular regions with modular domains that often resemble protein classes of various function. The pentraxin (PTX) domain, which is predicted by sequence homology within the extracellular region of four different aGPCR members, is well known to form pentamers and other oligomers. Oligomerization of GPCRs is frequently reported and mainly driven by interactions of the seven-transmembrane region and N or C termini. While the functional importance of dimers is well-established for some class C GPCRs, relatively little is known about aGPCR multimerization. Here, we showcase the example of ADGRG4, an orphan aGPCR that possesses a PTX-like domain at its very N-terminal tip, followed by an extremely long stalk containing serine-threonine repeats. Using X-ray crystallography and biophysical methods, we determined the structure of this unusual PTX-like domain and provide experimental evidence for a homodimer equilibrium of this domain which is Ca2+-independent and driven by intermolecular contacts that differ vastly from the known soluble PTXs. The formation of this dimer seems to be conserved in mammalian ADGRG4 indicating functional relevance. Our data alongside of theoretical considerations lead to the hypothesis that ADGRG4 acts as an in vivo sensor for shear forces in enterochromaffin and Paneth cells of the small intestine.


Asunto(s)
Fenómenos Biofísicos , Dominios Proteicos , Receptores Acoplados a Proteínas G , Transducción de Señal , Animales , Mamíferos/metabolismo , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Células Enterocromafines/metabolismo , Células de Paneth/metabolismo , Cristalografía por Rayos X , Fenómenos Biofísicos/fisiología , Modelos Moleculares , Estructura Terciaria de Proteína , Pliegue de Proteína , Alineación de Secuencia , Secuencia de Aminoácidos , Células HEK293 , Humanos
8.
iScience ; 26(10): 107841, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37766984

RESUMEN

G protein-coupled receptors (GPCRs) modulate the function of adipose tissue (AT) in general and of adipocytes, specifically. Although it is well-established that GPCRs are widely expressed in AT, their repertoire as well as their regulation and function in (patho)physiological conditions (e.g., obesity) is not fully resolved. Here, we established FATTLAS, an interactive public database, for improved access and analysis of RNA-seq data of mouse and human AT. After extracting the GPCRome of non-obese and obese individuals, highly expressed and differentially regulated GPCRs were identified. Exemplarily, we describe four receptors (GPR146, MRGPRF, FZD5, PTGER2) and analyzed their functions in a (pre)adipocyte cell model. Besides all receptors being involved in adipogenesis, MRGPRF is essential for adipocyte viability and regulates cAMP levels, while GPR146 modulates adipocyte lipolysis via constitutive activation of Gi proteins. Taken together, by implementing and using FATTLAS we describe four hitherto unrecognized GPCRs associated with AT function and adipogenesis.

9.
PLoS One ; 18(7): e0281487, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37418389

RESUMEN

Telomerase reverse transcriptase (TERT) promoter mutations occur frequently in cancer, have been associated with increased TERT expression and cell proliferation, and could potentially influence therapeutic regimens for melanoma. As the role of TERT expression in malignant melanoma and the non-canonical functions of TERT remain understudied, we aimed to extend the current knowledge on the impact of TERT promoter mutations and expression alterations in tumor progression by analyzing several highly annotated melanoma cohorts. Using multivariate models, we found no consistent association for TERT promoter mutations or TERT expression with the survival rate in melanoma cohorts under immune checkpoint inhibition. However, the presence of CD4+ T cells increased with TERT expression and correlated with the expression of exhaustion markers. While the frequency of promoter mutations did not change with Breslow thickness, TERT expression was increased in metastases arising from thinner primaries. As single-cell RNA-sequencing (RNA-seq) showed that TERT expression was associated with genes involved in cell migration and dynamics of the extracellular matrix, this suggests a role of TERT during invasion and metastasis. Co-regulated genes found in several bulk tumors and single-cell RNA-seq cohorts also indicated non-canonical functions of TERT related to mitochondrial DNA stability and nuclear DNA repair. This pattern was also evident in glioblastoma and across other entities. Hence, our study adds to the role of TERT expression in cancer metastasis and potentially also immune resistance.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Telomerasa , Humanos , Linfocitos T CD4-Positivos/patología , Melanoma/genética , Melanoma/patología , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología , Regiones Promotoras Genéticas , Mutación , Reparación del ADN/genética , Telomerasa/genética
10.
Cell Rep ; 42(7): 112679, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37354459

RESUMEN

The adhesion G-protein-coupled receptor GPR133 (ADGRD1) supports growth of the brain malignancy glioblastoma. How the extracellular interactome of GPR133 in glioblastoma modulates signaling remains unknown. Here, we use affinity proteomics to identify the transmembrane protein PTK7 as an extracellular binding partner of GPR133 in glioblastoma. PTK7 binds the autoproteolytically generated N-terminal fragment of GPR133 and its expression in trans increases GPR133 signaling. This effect requires the intramolecular cleavage of GPR133 and PTK7's anchoring in the plasma membrane. PTK7's allosteric action on GPR133 signaling is additive with but topographically distinct from orthosteric activation by soluble peptide mimicking the endogenous tethered Stachel agonist. GPR133 and PTK7 are expressed in adjacent cells in glioblastoma, where their knockdown phenocopies each other. We propose that this ligand-receptor interaction is relevant to the pathogenesis of glioblastoma and possibly other physiological processes in healthy tissues.


Asunto(s)
Glioblastoma , Humanos , Transducción de Señal , Receptores Acoplados a Proteínas G/metabolismo , Membrana Celular/metabolismo , Regulación Alostérica , Ligandos , Sitio Alostérico , Moléculas de Adhesión Celular/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo
11.
Front Cell Dev Biol ; 11: 1128456, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37250906

RESUMEN

The UDP-glucose receptor P2RY14, a rhodopsin-like G protein-coupled receptor (GPCR), was previously described as receptor expressed in A-intercalated cells of the mouse kidney. Additionally, we found P2RY14 is abundantly expressed in mouse renal collecting duct principal cells of the papilla and epithelial cells lining the renal papilla. To better understand its physiological function in kidney, we took advantage of a P2ry14 reporter and gene-deficient (KO) mouse strain. Morphometric studies showed that the receptor function contributes to kidney morphology. KO mice had a broader cortex relative to the total kidney area than wild-type (WT) mice. In contrast, the area of the outer stripe of the outer medulla was larger in WT compared to KO mice. Transcriptome comparison of the papilla region of WT and KO mice revealed differences in the gene expression of extracellular matrix proteins (e.g., decorin, fibulin-1, fibulin-7) and proteins involved in sphingolipid metabolism (e.g., small subunit b of the serine palmitoyltransferase) and other related GPCRs (e.g., GPR171). Using mass spectrometry, changes in the sphingolipid composition (e.g., chain length) were detected in the renal papilla of KO mice. At the functional level, we found that KO mice had a reduced urine volume but an unchanged glomerular filtration rate under normal chow and salt diets. Our study revealed P2ry14 as a functionally important GPCR in collecting duct principal cells and cells lining the renal papilla and the possible involvement of P2ry14 in nephroprotection by regulation of decorin.

12.
Int J Mol Sci ; 24(7)2023 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37047682

RESUMEN

P2Y12 is a G-protein-coupled receptor that is activated upon ADP binding. Considering its well-established role in platelet activation, blocking P2Y12 has been used as a therapeutic strategy for antiplatelet aggregation in cardiovascular disease patients. However, receptor studies have shown that P2Y12 is functionally expressed not only in platelets and the microglia but also in other cells of the immune system, such as in monocytes, dendritic cells, and T lymphocytes. As a result, studies were carried out investigating whether therapies targeting P2Y12 could also ameliorate inflammatory conditions, such as sepsis, rheumatoid arthritis, neuroinflammation, cancer, COVID-19, atherosclerosis, and diabetes-associated inflammation in animal models and human subjects. This review reports what is known about the expression of P2Y12 in the cells of the immune system and the effect of P2Y12 activation and/or inhibition in inflammatory conditions. Lastly, we will discuss the major problems and challenges in studying this receptor and provide insights on how they can be overcome.


Asunto(s)
COVID-19 , Receptores Purinérgicos P2 , Animales , Humanos , Antagonistas del Receptor Purinérgico P2Y/farmacología , Antagonistas del Receptor Purinérgico P2Y/uso terapéutico , COVID-19/metabolismo , Plaquetas/metabolismo , Transducción de Señal , Sistema Inmunológico , Receptores Purinérgicos P2/metabolismo , Receptores Purinérgicos P2Y12/genética , Receptores Purinérgicos P2Y12/metabolismo , Agregación Plaquetaria , Inhibidores de Agregación Plaquetaria/farmacología , Adenosina Difosfato/metabolismo
13.
Oncotarget ; 14: 14-20, 2023 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-36634214

RESUMEN

Overexpression of the dihydrolipoamide S-succinyltransferase (DLST) is associated with poor outcome in neuroblastoma patients and triple-negative breast cancer (TNBC) and specifically with the oxidative phosphorylation (OXPHOS) pathway. Inhibitors of OXPHOS were previously suggested as a potential therapeutic strategy for a subset of patients with high-risk neuroblastoma. Here, we tested if cell lines with DLST amplifications or high mRNA levels were associated with sensitivity to 250 drugs from the Genomics of Drug Sensitivity in Cancer (GDSC) dataset by comparing them to cell lines without these changes. DLST-altered cell lines were more sensitive to 7 approved drugs, among these obatoclax mesylate, a BCL2 inhibitor that reduces OXPHOS in human leukemia stem cells. Moreover, several protein kinase inhibitors were identified to be efficient in cell lines with DLST amplifications or high mRNA levels, suggesting a vulnerability of DLST-altered cell lines for drugs targeting the ERK/MAPK pathway. Furthermore, increased DLST expression in cell lines with driver mutations in KRAS supported this relationship. We therefore conclude that, in addition to OXPHOS, protein kinases could be potential targets of therapy in the presence of DLST amplifications or high mRNA levels. The new drug candidates proposed here could serve in experimental testing on drug efficacy in knock-in cell lines and DLST-activated tumors.


Asunto(s)
Neuroblastoma , Humanos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Línea Celular , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/genética , Línea Celular Tumoral
14.
J Cancer Res Clin Oncol ; 149(9): 5539-5545, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36472769

RESUMEN

PURPOSE: A wide therapeutic repertoire has become available to oncologists including radio- and chemotherapy, small molecules and monoclonal antibodies. However, drug efficacy can be limited by genetic heterogeneity. Here, we designed a webtool that facilitates the data analysis of the in vitro drug sensitivity data on 265 approved compounds from the GDSC database in association with a plethora of genetic changes documented for 1001 cell lines in the CCLE data. METHODS: The webtool computes odds ratios of drug resistance for a queried set of genetic alterations. It provides results on the efficacy of single compounds or groups of compounds assigned to cellular signaling pathways. Webtool availability: https://tools.hornlab.org/GDSC/ . RESULTS: We first replicated established associations of genetic driver mutations in BRAF, RAS genes and EGFR with drug response. We then tested the 'BRCAness' hypothesis and did not find increased sensitivity to the assayed PARP inhibitors. Analyzing specific PIK3CA mutations related to cancer and mendelian overgrowth, we found support for the described sensitivity of H1047 mutants to GSK690693 targeting the AKT pathway. Testing a co-mutated gene pair, GATA3 activation abolished PTEN-related sensitivity to PI3K/mTOR inhibition. Finally, the pharmacogenomic modifier ABCB1 was associated with olaparib resistance. CONCLUSIONS: This tool could identify potential drug candidates in the presence of custom sets of genetic changes and moreover, improve the understanding of signaling pathways. The underlying computer code can be adapted to larger drug response datasets to help structure and accommodate the increasingly large biomedical knowledge base.


Asunto(s)
Neoplasias , Fosfatidilinositol 3-Quinasas , Humanos , Fosfatidilinositol 3-Quinasas/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Transducción de Señal , Mutación , Línea Celular , Resistencia a Medicamentos , Resistencia a Antineoplásicos/genética , Línea Celular Tumoral
15.
Nat Metab ; 4(12): 1697-1712, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36536132

RESUMEN

Here we report a heterozygous tandem duplication at the ASIP (agouti signaling protein) gene locus causing ubiquitous, ectopic ASIP expression in a female patient with extreme childhood obesity. The mutation places ASIP under control of the ubiquitously active itchy E3 ubiquitin protein ligase promoter, driving the generation of ASIP in patient-derived native and induced pluripotent stem cells for all germ layers and hypothalamic-like neurons. The patient's phenotype of early-onset obesity, overgrowth, red hair and hyperinsulinemia is concordant with that of mutant mice ubiquitously expressing the homolog nonagouti. ASIP represses melanocyte-stimulating hormone-mediated activation as a melanocortin receptor antagonist, which might affect eating behavior, energy expenditure, adipocyte differentiation and pigmentation, as observed in the index patient. As the type of mutation escapes standard genetic screening algorithms, we rescreened the Leipzig Childhood Obesity cohort of 1,745 patients and identified four additional patients with the identical mutation, ectopic ASIP expression and a similar phenotype. Taken together, our data indicate that ubiquitous ectopic ASIP expression is likely a monogenic cause of human obesity.


Asunto(s)
Obesidad Infantil , Niño , Humanos , Femenino , Animales , Ratones , Proteína de Señalización Agouti/genética , Proteína de Señalización Agouti/metabolismo , Pigmentación/genética , Mutación , Fenotipo
17.
Am J Physiol Cell Physiol ; 322(6): C1047-C1060, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35417266

RESUMEN

Incorporating mechanical cues into cellular responses allows us to experience our direct environment. Specialized cells can perceive and discriminate between different physical properties such as level of vibration, temperature, or pressure. Mechanical forces are abundant signals that also shape general cellular responses such as cytoskeletal rearrangement, differentiation, or migration and contribute to tissue development and function. The molecular structures that perceive and transduce mechanical forces are specialized cytoskeletal proteins, cell junction molecules, and membrane proteins such as ion channels and metabotropic receptors. G protein-coupled receptors (GPCRs) have attracted attention as metabotropic force receptors as they are among the most important drug targets. This review summarizes the function of mechano-sensitive GPCRs, specifically, the angiotensin II type 1 receptor and adrenergic, apelin, histamine, parathyroid hormone 1, and orphan receptors, focusing particularly on the advanced knowledge gained from adhesion-type GPCRs. We distinguish between shear stress and cell swelling/stretch as the two major types of mechano-activation of these receptors and contemplate the potential contribution of the force-from-lipid and force-from-tether models that have previously been suggested for ion channels.


Asunto(s)
Canales Iónicos , Receptores Acoplados a Proteínas G , Fenómenos Mecánicos , Proteínas de la Membrana/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Estrés Mecánico
18.
Nature ; 604(7907): 763-770, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35418678

RESUMEN

Adhesion G-protein-coupled receptors (aGPCRs) are important for organogenesis, neurodevelopment, reproduction and other processes1-6. Many aGPCRs are activated by a conserved internal (tethered) agonist sequence known as the Stachel sequence7-12. Here, we report the cryogenic electron microscopy (cryo-EM) structures of two aGPCRs in complex with Gs: GPR133 and GPR114. The structures indicate that the Stachel sequences of both receptors assume an α-helical-bulge-ß-sheet structure and insert into a binding site formed by the transmembrane domain (TMD). A hydrophobic interaction motif (HIM) within the Stachel sequence mediates most of the intramolecular interactions with the TMD. Combined with the cryo-EM structures, biochemical characterization of the HIM motif provides insight into the cross-reactivity and selectivity of the Stachel sequences. Two interconnected mechanisms, the sensing of Stachel sequences by the conserved 'toggle switch' W6.53 and the constitution of a hydrogen-bond network formed by Q7.49/Y7.49 and the P6.47/V6.47φφG6.50 motif (φ indicates a hydrophobic residue), are important in Stachel sequence-mediated receptor activation and Gs coupling. Notably, this network stabilizes kink formation in TM helices 6 and 7 (TM6 and TM7, respectively). A common Gs-binding interface is observed between the two aGPCRs, and GPR114 has an extended TM7 that forms unique interactions with Gs. Our structures reveal the detailed mechanisms of aGPCR activation by Stachel sequences and their Gs coupling.


Asunto(s)
Péptidos , Receptores Acoplados a Proteínas G , Sitios de Unión , Microscopía por Crioelectrón , Dominios Proteicos , Estructura Secundaria de Proteína , Receptores Acoplados a Proteínas G/metabolismo , Relación Estructura-Actividad
19.
Sci Adv ; 8(5): eabl6496, 2022 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-35119923

RESUMEN

Steller's sea cow, an extinct sirenian and one of the largest Quaternary mammals, was described by Georg Steller in 1741 and eradicated by humans within 27 years. Here, we complement Steller's descriptions with paleogenomic data from 12 individuals. We identified convergent evolution between Steller's sea cow and cetaceans but not extant sirenians, suggesting a role of several genes in adaptation to cold aquatic (or marine) environments. Among these are inactivations of lipoxygenase genes, which in humans and mouse models cause ichthyosis, a skin disease characterized by a thick, hyperkeratotic epidermis that recapitulates Steller's sea cows' reportedly bark-like skin. We also found that Steller's sea cows' abundance was continuously declining for tens of thousands of years before their description, implying that environmental changes also contributed to their extinction.


Asunto(s)
Dugong , Animales , Bovinos , Femenino , Mamíferos , Ratones , Fenotipo
20.
BMC Mol Cell Biol ; 23(1): 8, 2022 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-35100990

RESUMEN

BACKGROUND: Protein-protein interactions form the basis of every organism and thus, investigating their dynamics, intracellular protein localization, trafficking and interactions of distinct proteins such as receptors and their ligand-binding are of general interest. Bioluminescence resonance energy transfer (BRET) is a powerful tool to investigate these aspects in vitro. Since in vitro approaches mostly neglect the more complex in vivo situation, we established BRET as an in vivo tool for studying protein interactions in the nematode C. elegans. RESULTS: We generated worms expressing NanoBRET sensors and elucidated the interaction of two ligand-G protein-coupled receptor (GPCR) pairs, the neuropeptide receptor NPR-11 and the Adhesion GPCR LAT-1. Furthermore, we adapted the enhanced bystander BRET technology to measure subcellular protein localization. Using this approach, we traced ligand-induced internalization of NPR-11 in vivo. CONCLUSIONS: Our results indicate that in vivo NanoBRET is a tool to investigate specific protein interactions and localization in a physiological setting in real time in the living organism C. elegans.


Asunto(s)
Caenorhabditis elegans , Receptores Acoplados a Proteínas G , Animales , Caenorhabditis elegans/genética , Transferencia de Energía , Ligandos , Transporte de Proteínas , Receptores Acoplados a Proteínas G/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA