Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Sci Rep ; 9(1): 2483, 2019 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-30792443

RESUMEN

Eukaryotic integral membrane proteins (IMPs) are difficult to study due to low functional expression levels. To investigate factors for efficient biogenesis of eukaryotic IMPs in the prokaryotic model organism Escherichia coli, important, e.g., for isotope-labeling for NMR, we selected for E. coli cells expressing high levels of functional G protein-coupled receptors (GPCRs) by FACS. Utilizing an E. coli strain library with all non-essential genes systematically deleted, we unexpectedly discovered upon whole-genome sequencing that the improved phenotype was not conferred by the deleted genes but by various subtle alterations in the "housekeeping" sigma 70 factor (RpoD). When analyzing effects of the rpoD mutations at the transcriptome level we found that toxic effects incurred on wild-type E. coli during receptor expression were diminished by two independent and synergistic effects: a slower but longer-lasting GPCR biosynthesis and an optimized transcriptional pattern, augmenting growth and expression at low temperature, setting the basis for further bacterial strain engineering.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/genética , Escherichia coli/crecimiento & desarrollo , Perfilación de la Expresión Génica/métodos , Proteínas de la Membrana/genética , Mutación , Factor sigma/genética , ARN Polimerasas Dirigidas por ADN/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Fenotipo , Conformación Proteica , Factor sigma/química , Secuenciación Completa del Genoma
2.
Nat Commun ; 10(1): 17, 2019 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-30604743

RESUMEN

Neurokinins (or tachykinins) are peptides that modulate a wide variety of human physiology through the neurokinin G protein-coupled receptor family, implicated in a diverse array of pathological processes. Here we report high-resolution crystal structures of the human NK1 receptor (NK1R) bound to two small-molecule antagonist therapeutics - aprepitant and netupitant and the progenitor antagonist CP-99,994. The structures reveal the detailed interactions between clinically approved antagonists and NK1R, which induce a distinct receptor conformation resulting in an interhelical hydrogen-bond network that cross-links the extracellular ends of helices V and VI. Furthermore, the high-resolution details of NK1R bound to netupitant establish a structural rationale for the lack of basal activity in NK1R. Taken together, these co-structures provide a comprehensive structural basis of NK1R antagonism and will facilitate the design of new therapeutics targeting the neurokinin receptor family.


Asunto(s)
Antagonistas del Receptor de Neuroquinina-1/química , Receptores de Neuroquinina-1/química , Aprepitant/química , Aprepitant/farmacología , Sitios de Unión , Cristalografía por Rayos X , Diseño de Fármacos , Células HEK293 , Humanos , Simulación de Dinámica Molecular , Antagonistas del Receptor de Neuroquinina-1/farmacología , Piperidinas/química , Piperidinas/farmacología , Estructura Secundaria de Proteína , Piridinas/química , Piridinas/farmacología , Receptores de Neuroquinina-1/aislamiento & purificación , Receptores de Neuroquinina-1/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Relación Estructura-Actividad
3.
Sci Rep ; 6: 21294, 2016 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-26887595

RESUMEN

Structural and biophysical studies as well as drug screening approaches on G protein-coupled receptors (GPCRs) have been largely hampered by the poor biophysical properties and low expression yields of this largest class of integral membrane proteins. Thermostabilisation of GPCRs by introduction of stabilising mutations has been a key factor to overcome these limitations. However, labelled ligands with sufficient affinity, which are required for selective binding to the correctly folded receptor, are often not available. Here we describe a novel procedure to improve receptor expression and stability in a generic way, independent of specific ligands, by means of directed evolution in E. coli. We have engineered a homogenous fluorescent reporter assay that only detects receptors which are correctly integrated into the inner cell membrane and, thus, discriminates functional from non-functional receptor species. When we combined this method with a directed evolution procedure we obtained highly expressing mutants of the neurotensin receptor 1 with greatly improved thermostability. By this procedure receptors with poor expression and/or low stability, for which no ligands or only ones with poor binding properties are available, can now be generated in quantities allowing detailed structural and biophysical analysis.


Asunto(s)
Evolución Molecular Dirigida/métodos , Pliegue de Proteína , Receptores Acoplados a Proteínas G , Animales , Escherichia coli/genética , Humanos , Receptores Acoplados a Proteínas G/biosíntesis , Receptores Acoplados a Proteínas G/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética
4.
Sci Rep ; 6: 21508, 2016 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-26911446

RESUMEN

Despite recent successes, many G protein-coupled receptors (GPCRs) remained refractory to detailed molecular studies due to insufficient production yields, even in the most sophisticated eukaryotic expression systems. Here we introduce a robust method employing directed evolution of GPCRs in yeast that allows fast and efficient generation of receptor variants which show strongly increased functional production levels in eukaryotic expression hosts. Shown by evolving three different receptors in this study, the method is widely applicable, even for GPCRs which are very difficult to express. The evolved variants showed up to a 26-fold increase of functional production in insect cells compared to the wild-type receptors. Next to the increased production, the obtained variants exhibited improved biophysical properties, while functional properties remained largely unaffected. Thus, the presented method broadens the portfolio of GPCRs accessible for detailed investigations. Interestingly, the functional production of GPCRs in yeast can be further increased by induced host adaptation.


Asunto(s)
Receptores Acoplados a Proteínas G/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Animales , Western Blotting , Evolución Molecular Dirigida , Humanos , Microscopía Fluorescente , Receptores Acoplados a Proteínas G/genética , Receptores de Neuroquinina-1/genética , Receptores de Neuroquinina-1/metabolismo , Receptores de Neurotensina/genética , Receptores de Neurotensina/metabolismo , Receptores Opioides kappa/genética , Receptores Opioides kappa/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas de Saccharomyces cerevisiae/genética , Células Sf9 , Spodoptera
5.
J Mol Biol ; 428(6): 1272-1289, 2016 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-26812208

RESUMEN

Fluorescent probes constitute a valuable toolbox to address a variety of biological questions and they have become irreplaceable for imaging methods. Commonly, such probes consist of fluorescent proteins or small organic fluorophores coupled to biological molecules of interest. Recently, a novel class of fluorescence-based probes, fluorogen-activating proteins (FAPs), has been reported. These binding proteins are based on antibody single-chain variable fragments and activate fluorogenic dyes, which only become fluorescent upon activation and do not fluoresce when free in solution. Here we present a novel class of fluorogen activators, termed FADAs, based on the very robust designed ankyrin repeat protein scaffold, which also readily folds in the reducing environment of the cytoplasm. The FADA generated in this study was obtained by combined selections with ribosome display and yeast surface display. It enhances the fluorescence of malachite green (MG) dyes by a factor of more than 11,000 and thus activates MG to a similar extent as FAPs based on single-chain variable fragments. As shown by structure determination and in vitro measurements, this FADA was evolved to form a homodimer for the activation of MG dyes. Exploiting the favorable properties of the designed ankyrin repeat protein scaffold, we created a FADA biosensor suitable for imaging of proteins on the cell surface, as well as in the cytosol. Moreover, based on the requirement of dimerization for strong fluorogen activation, a prototype FADA biosensor for in situ detection of a target protein and protein-protein interactions was developed. Therefore, FADAs are versatile fluorescent probes that are easily produced and suitable for diverse applications and thus extend the FAP technology.


Asunto(s)
Repetición de Anquirina , Técnicas Biosensibles/métodos , Colorantes Fluorescentes/metabolismo , Ingeniería de Proteínas/métodos , Proteínas Recombinantes/metabolismo , Colorantes de Rosanilina/metabolismo , Proteínas Recombinantes/genética
6.
Proc Natl Acad Sci U S A ; 111(6): E655-62, 2014 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-24453215

RESUMEN

Crystallography has advanced our understanding of G protein-coupled receptors, but low expression levels and instability in solution have limited structural insights to very few selected members of this large protein family. Using neurotensin receptor 1 (NTR1) as a proof of principle, we show that two directed evolution technologies that we recently developed have the potential to overcome these problems. We purified three neurotensin-bound NTR1 variants from Escherichia coli and determined their X-ray structures at up to 2.75 Å resolution using vapor diffusion crystallization experiments. A crystallized construct was pharmacologically characterized and exhibited ligand-dependent signaling, internalization, and wild-type-like agonist and antagonist affinities. Our structures are fully consistent with all biochemically defined ligand-contacting residues, and they represent an inactive NTR1 state at the cytosolic side. They exhibit significant differences to a previously determined NTR1 structure (Protein Data Bank ID code 4GRV) in the ligand-binding pocket and by the presence of the amphipathic helix 8. A comparison of helix 8 stability determinants between NTR1 and other crystallized G protein-coupled receptors suggests that the occupancy of the canonical position of the amphipathic helix is reduced to various extents in many receptors, and we have elucidated the sequence determinants for a stable helix 8. Our analysis also provides a structural rationale for the long-known effects of C-terminal palmitoylation reactions on G protein-coupled receptor signaling, receptor maturation, and desensitization.


Asunto(s)
Evolución Molecular Dirigida , Escherichia coli/genética , Receptores de Neurotensina/genética , Transducción de Señal , Secuencia de Aminoácidos , Cristalografía por Rayos X , Modelos Moleculares , Datos de Secuencia Molecular , Estabilidad Proteica , Receptores de Neurotensina/química , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA