Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Nano Converg ; 10(1): 53, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37971675

RESUMEN

Wound treatment requires a plethora of independent properties. Hydration, anti-bacterial properties, oxygenation and patient-specific drug delivery all contribute to the best possible wound healing. Three-dimensional (3D) printing has emerged as a set of techniques to realize individually adapted wound dressings with open porous structure from biomedically optimized materials. To include all the desired properties into the so-called bioinks is still challenging. In this work, a bioink system based on anti-bacterial zinc oxide tetrapods (t-ZnO) and biocompatible sodium alginate is presented. Additive manufacturing of these hydrogels with high t-ZnO content (up to 15 wt.%) could be realized. Additionally, protein adsorption on the t-ZnO particles was evaluated to test their suitability as carriers for active pharmaceutical ingredients (APIs). Open porous and closed cell printed wound dressings were tested for their cell and skin compatibility and anti-bacterial properties. In these categories, the open porous constructs exhibited protruding t-ZnO arms and proved to be anti-bacterial. Dermatological tests on ex vivo skin showed no negative influence of the alginate wound dressing on the skin, making this bioink an ideal carrier and evaluation platform for APIs in wound treatment and healing.

2.
Dent Mater ; 39(7): 669-676, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37230861

RESUMEN

OBJECTIVES: The aim of this study was to evaluate the mechanical properties and cost efficiency of direct ink writing (DIW) printing of two different zirconia inks compared to casting and subtractive manufacturing. METHODS: Zirconia disks were manufactured by DIW printing and the casting process and divided into six subgroups (n = 20) according to sintering temperatures (1350 °C, 1450 °C and 1550 °C) and two different ink compositions (Ink 1, Ink 2). A CAD/CAM-milled high strength zirconia (3Y-TZP) was added as reference group. The biaxial flexural strength (BFS) was measured using the piston-on-three-balls test. X-ray-diffraction (XRD) was used for microstructural analysis. The cost efficiency was compared for DIW printing and subtractive manufacturing by calculation of the manufacturing costs of one dental crown. RESULTS: Using XRD, monoclinic and tetragonal phases were detected for Ink 1, for all other groups no monoclinic phase was detected. The CAD/CAM-milled ceramic showed a significantly higher BFS than all other groups. The BFS of Ink 2 was significantly higher than the BFS of Ink 1. At a sintering temperature of 1550 °C the mean BFS of the printed Ink 2 was 822 ± 174 MPa. The BFS of the cast materials did not show a significantly higher BFS than the corresponding printed group for any tested parameter-set. The manufacturing costs of DIW printed crowns are lower than the manufacturing costs of CAD/CAM-milled crowns. CONCLUSION: DIW has a high potential to replace subtractive processes for dental applications, as it shows promising mechanical properties for appropriate ink compositions and facilitates a highly cost effective production.


Asunto(s)
Cerámica , Tinta , Ensayo de Materiales , Propiedades de Superficie , Cerámica/química , Circonio/química , Diseño Asistido por Computadora , Impresión Tridimensional , Materiales Dentales/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA