RESUMEN
We present the element-specific and time resolved visualization of uniform ferromagnetic resonance excitations of a Permalloy (Py) disk-Cobalt (Co) stripe bilayer microstructure. The transverse high frequency component of the resonantly excited magnetization is sampled in the ps regime by a combination of ferromagnetic resonance (FMR) and scanning transmission X-ray microscopy (STXM-FMR) recording snapshots of the local magnetization precession of Py and Co with nanometer spatial resolution. The approach allows us to individually image the resonant dynamic response of each element, and we find that angular momentum is transferred from the Py disk to the Co stripe and vice versa at their respective resonances. The integral (cavity) FMR spectrum of our sample shows an unexpected additional third resonance. This resonance is observed in the STXM-FMR experiments as well. Our microscopic findings suggest that it is governed by magnetic exchange between Py and Co, showing for the Co stripe a difference in relative phase of the magnetization due to stray field influence.
RESUMEN
Using a time-resolved detection scheme in scanning transmission X-ray microscopy (STXM), we measured element resolved ferromagnetic resonance (FMR) at microwave frequencies up to 10 GHz and a spatial resolution down to 20 nm at two different synchrotrons. We present different methods to separate the contribution of the background from the dynamic magnetic contrast based on the X-ray magnetic circular dichroism (XMCD) effect. The relative phase between the GHz microwave excitation and the X-ray pulses generated by the synchrotron, as well as the opening angle of the precession at FMR can be quantified. A detailed analysis for homogeneous and inhomogeneous magnetic excitations demonstrates that the dynamic contrast indeed behaves as the usual XMCD effect. The dynamic magnetic contrast in time-resolved STXM has the potential be a powerful tool to study the linear and nonlinear, magnetic excitations in magnetic micro- and nano-structures with unique spatial-temporal resolution in combination with element selectivity.