Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Sci Adv ; 10(14): eadm9191, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38569045

RESUMEN

Pure biogenic new particle formation (NPF) induced by highly oxygenated organic molecules (HOMs) could be an important mechanism for pre-industrial aerosol formation. However, it has not been unambiguously confirmed in the ambient due to the scarcity of truly pristine continental locations in the present-day atmosphere or the lack of chemical characterization of NPF precursors. Here, we report ambient observations of pure biogenic HOM-driven NPF over a peatland in southern Finland. Meteorological decoupling processes formed an "air pocket" (i.e., a very shallow surface layer) at night and favored NPF initiated entirely by biogenic HOM from this peatland, whose atmospheric environment closely resembles that of the pre-industrial era. Our study sheds light on pre-industrial aerosol formation, which represents the baseline for estimating the impact of present and future aerosol on climate, as well as on future NPF, the features of which may revert toward pre-industrial-like conditions due to air pollution mitigation.

2.
Nat Commun ; 14(1): 3347, 2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37291087

RESUMEN

The interaction between nitrogen monoxide (NO) and organic peroxy radicals (RO2) greatly impacts the formation of highly oxygenated organic molecules (HOM), the key precursors of secondary organic aerosols. It has been thought that HOM production can be significantly suppressed by NO even at low concentrations. Here, we perform dedicated experiments focusing on HOM formation from monoterpenes at low NO concentrations (0 - 82 pptv). We demonstrate that such low NO can enhance HOM production by modulating the RO2 loss and favoring the formation of alkoxy radicals that can continue to autoxidize through isomerization. These insights suggest that HOM yields from typical boreal forest emissions can vary between 2.5%-6.5%, and HOM formation will not be completely inhibited even at high NO concentrations. Our findings challenge the notion that NO monotonically reduces HOM yields by extending the knowledge of RO2-NO interactions to the low-NO regime. This represents a major advance towards an accurate assessment of HOM budgets, especially in low-NO environments, which prevails in the pre-industrial atmosphere, pristine areas, and the upper boundary layer.


Asunto(s)
Atmósfera , Óxido Nítrico , Monoterpenos , Oxidación-Reducción , Aerosoles
3.
Nat Commun ; 7: 11594, 2016 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-27197574

RESUMEN

The growth of freshly formed aerosol particles can be the bottleneck in their survival to cloud condensation nuclei. It is therefore crucial to understand how particles grow in the atmosphere. Insufficient experimental data has impeded a profound understanding of nano-particle growth under atmospheric conditions. Here we study nano-particle growth in the CLOUD (Cosmics Leaving OUtdoors Droplets) chamber, starting from the formation of molecular clusters. We present measured growth rates at sub-3 nm sizes with different atmospherically relevant concentrations of sulphuric acid, water, ammonia and dimethylamine. We find that atmospheric ions and small acid-base clusters, which are not generally accounted for in the measurement of sulphuric acid vapour, can participate in the growth process, leading to enhanced growth rates. The availability of compounds capable of stabilizing sulphuric acid clusters governs the magnitude of these effects and thus the exact growth mechanism. We bring these observations into a coherent framework and discuss their significance in the atmosphere.

4.
J Am Chem Soc ; 136(44): 15596-606, 2014 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-25283472

RESUMEN

The prompt formation of highly oxidized organic compounds in the ozonolysis of cyclohexene (C6H10) was investigated by means of laboratory experiments together with quantum chemical calculations. The experiments were performed in borosilicate glass flow tube reactors coupled to a chemical ionization atmospheric pressure interface time-of-flight mass spectrometer with a nitrate ion (NO3(-))-based ionization scheme. Quantum chemical calculations were performed at the CCSD(T)-F12a/VDZ-F12//ωB97XD/aug-cc-pVTZ level, with kinetic modeling using multiconformer transition state theory, including Eckart tunneling corrections. The complementary investigation methods gave a consistent picture of a formation mechanism advancing by peroxy radical (RO2) isomerization through intramolecular hydrogen shift reactions, followed by sequential O2 addition steps, that is, RO2 autoxidation, on a time scale of seconds. Dimerization of the peroxy radicals by recombination and cross-combination reactions is in competition with the formation of highly oxidized monomer species and is observed to lead to peroxides, potentially diacyl peroxides. The molar yield of these highly oxidized products (having O/C > 1 in monomers and O/C > 0.55 in dimers) from cyclohexene ozonolysis was determined as (4.5 ± 3.8)%. Fully deuterated cyclohexene and cis-6-nonenal ozonolysis, as well as the influence of water addition to the system (either H2O or D2O), were also investigated in order to strengthen the arguments on the proposed mechanism. Deuterated cyclohexene ozonolysis resulted in a less oxidized product distribution with a lower yield of highly oxygenated products and cis-6-nonenal ozonolysis generated the same monomer product distribution, consistent with the proposed mechanism and in agreement with quantum chemical modeling.

5.
Science ; 344(6185): 717-21, 2014 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-24833386

RESUMEN

Atmospheric new-particle formation affects climate and is one of the least understood atmospheric aerosol processes. The complexity and variability of the atmosphere has hindered elucidation of the fundamental mechanism of new-particle formation from gaseous precursors. We show, in experiments performed with the CLOUD (Cosmics Leaving Outdoor Droplets) chamber at CERN, that sulfuric acid and oxidized organic vapors at atmospheric concentrations reproduce particle nucleation rates observed in the lower atmosphere. The experiments reveal a nucleation mechanism involving the formation of clusters containing sulfuric acid and oxidized organic molecules from the very first step. Inclusion of this mechanism in a global aerosol model yields a photochemically and biologically driven seasonal cycle of particle concentrations in the continental boundary layer, in good agreement with observations.


Asunto(s)
Aerosoles/química , Atmósfera/química , Cambio Climático , Compuestos Orgánicos/química , Ácidos Sulfúricos/química , Simulación por Computador , Modelos Químicos , Oxidación-Reducción , Procesos Fotoquímicos , Estaciones del Año , Volatilización
6.
Proc Natl Acad Sci U S A ; 110(43): 17223-8, 2013 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-24101502

RESUMEN

Atmospheric aerosols formed by nucleation of vapors affect radiative forcing and therefore climate. However, the underlying mechanisms of nucleation remain unclear, particularly the involvement of organic compounds. Here, we present high-resolution mass spectra of ion clusters observed during new particle formation experiments performed at the Cosmics Leaving Outdoor Droplets chamber at the European Organization for Nuclear Research. The experiments involved sulfuric acid vapor and different stabilizing species, including ammonia and dimethylamine, as well as oxidation products of pinanediol, a surrogate for organic vapors formed from monoterpenes. A striking resemblance is revealed between the mass spectra from the chamber experiments with oxidized organics and ambient data obtained during new particle formation events at the Hyytiälä boreal forest research station. We observe that large oxidized organic compounds, arising from the oxidation of monoterpenes, cluster directly with single sulfuric acid molecules and then form growing clusters of one to three sulfuric acid molecules plus one to four oxidized organics. Most of these organic compounds retain 10 carbon atoms, and some of them are remarkably highly oxidized (oxygen-to-carbon ratios up to 1.2). The average degree of oxygenation of the organic compounds decreases while the clusters are growing. Our measurements therefore connect oxidized organics directly, and in detail, with the very first steps of new particle formation and their growth between 1 and 2 nm in a controlled environment. Thus, they confirm that oxidized organics are involved in both the formation and growth of particles under ambient conditions.


Asunto(s)
Atmósfera/química , Monoterpenos/química , Compuestos Orgánicos/química , Ácidos Sulfúricos/química , Aerosoles/análisis , Aerosoles/química , Amoníaco/análisis , Amoníaco/química , Atmósfera/análisis , Dimetilaminas/análisis , Dimetilaminas/química , Monitoreo del Ambiente/instrumentación , Monitoreo del Ambiente/métodos , Espectrometría de Masas , Compuestos Orgánicos/análisis , Oxidación-Reducción , Tamaño de la Partícula , Reproducibilidad de los Resultados , Volatilización
7.
J Breath Res ; 3(2): 027004, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21383459

RESUMEN

We report on on-line breath gas analysis with a new type of analytical instrument, which represents the next generation of proton-transfer-reaction mass spectrometers. This time-of-flight mass spectrometer in combination with the soft proton-transfer-reaction ionization (PTR-TOF) offers numerous advantages for the sensitive detection of volatile organic compounds and overcomes several limitations. First, a time-of-flight instrument allows for a measurement of a complete mass spectrum within a fraction of a second. Second, a high mass resolving power enables the separation of isobaric molecules and the identification of their chemical composition. We present the first on-line breath measurements with a PTR-TOF and demonstrate the advantages for on-line breath analysis. In combination with buffered end-tidal (BET) sampling, we obtain a complete mass spectrum up to 320 Th within one exhalation with a signal-to-noise ratio sufficient to measure down to pptv levels. We exploit the high mass resolving power to identify the main components in the breath composition of several healthy volunteers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA