Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 330
Filtrar
1.
Nat Cell Biol ; 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39379702

RESUMEN

Despite the biomedical importance of haematopoietic stem cells and haematopoietic progenitor cells, their in vitro stabilization in a developmental context has not been achieved due to limited knowledge of signals and markers specifying the multiple haematopoietic waves as well as ethically restricted access to the human embryo. Thus, an in vitro approach resembling aspects of haematopoietic development in the context of neighbouring tissues is of interest. Our established human pluripotent stem cell-derived heart-forming organoids (HFOs) recapitulate aspects of heart, vasculature and foregut co-development. Modulating HFO differentiation, we here report the generation of blood-generating HFOs. While maintaining a functional ventricular-like heart anlagen, blood-generating HFOs comprise a mesenchyme-embedded haemogenic endothelial layer encompassing multiple haematopoietic derivatives and haematopoietic progenitor cells with erythro-myeloid and lymphoid potential, reflecting aspects of primitive and definitive haematopoiesis. The model enables the morphologically structured co-development of cardiac, endothelial and multipotent haematopoietic tissues equivalent to the intra-embryonic haematopoietic region in vivo, promoting research on haematopoiesis in vitro.

2.
Mol Ther ; 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39295144

RESUMEN

Pompe disease, a rare genetic neuromuscular disorder, is caused by a deficiency of acid alpha-glucosidase (GAA), leading to an accumulation of glycogen in lysosomes, and resulting in the progressive development of muscle weakness. The current standard treatment, enzyme replacement therapy (ERT), is not curative and has limitations such as poor penetration into skeletal muscle and both the central and peripheral nervous systems, a risk of immune responses against the recombinant enzyme, and the requirement for high doses and frequent infusions. To overcome these limitations, lentiviral vector-mediated hematopoietic stem and progenitor cell (HSPC) gene therapy has been proposed as a next-generation approach for treating Pompe disease. This study demonstrates the potential of lentiviral HSPC gene therapy to reverse the pathological effects of Pompe disease in a preclinical mouse model. It includes a comprehensive safety assessment via integration site analysis, along with single-cell RNA sequencing analysis of central nervous tissue samples to gain insights into the underlying mechanisms of phenotype correction.

3.
Hum Gene Ther ; 35(17-18): 669-679, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39150017

RESUMEN

Severe combined immunodeficiency (SCID) encompasses rare primary immunodeficiency disorders characterized by deficient T-cell development, which leads to a severely compromised immune system and susceptibility to life-threatening infections. Among SCID subtypes, IL7RA-SCID is caused by mutations in the interleukin 7 receptor alpha chain (IL7RA) and represents a significant subset of patients with limited treatment options. This study investigated the efficacy of a self-inactivating (SIN) alpharetroviral vector (ARV) engineered to deliver a codon-optimized IL7RA cDNA to restore T-cell development in Il7r-knockout mice. We compared the elongation factor 1 alpha short (EFS) promoter and the lymphoid-restricted Lck promoter for their ability to drive IL7RA expression and found that the EFS promoter enabled robust and sustained IL7RA expression that led to the functional rescue of T-lymphopoiesis in vitro and in vivo. Conversely, though effective in vitro, the Lck promoter failed to produce viable T-cell populations in vivo. Our results highlight the potential of using SIN-ARVs as a gene therapy (GT) strategy for treating IL7RA-SCID. Importantly, sustained production of T-lymphocytes was found in both primary and secondary transplant recipient animals with no adverse effects, supporting the safety and feasibility of this approach. Overall, this study provides valuable insights into the development of GT for IL7RA-SCID and underscores the clinical potential of an EFS-driven SIN-ARV to restore IL7RA-deficient immune function.


Asunto(s)
Terapia Genética , Vectores Genéticos , Inmunodeficiencia Combinada Grave , Terapia Genética/métodos , Animales , Vectores Genéticos/genética , Vectores Genéticos/administración & dosificación , Inmunodeficiencia Combinada Grave/terapia , Inmunodeficiencia Combinada Grave/genética , Ratones , Humanos , Regiones Promotoras Genéticas , Ratones Noqueados , Linfocitos T/inmunología , Linfocitos T/metabolismo , Subunidad alfa del Receptor de Interleucina-7/genética , Modelos Animales de Enfermedad
4.
J Mol Med (Berl) ; 102(9): 1163-1174, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39110182

RESUMEN

Cisplatin is a chemotherapeutic agent widely used to treat solid tumors. However, it can also be highly ototoxic, resulting in high-frequency hearing loss. Cisplatin causes degeneration of hair cells (HCs) and spiral ganglion neurons (SGNs) in the inner ear, which are essential components of the hearing process and cannot be regenerated in mammals. As the affected cells primarily die by apoptosis, we tested several anti-apoptotic small molecules to protect these cells from drug-induced toxicity. We found that the general caspase inhibitor Emricasan could significantly counteract the toxic effects of cisplatin in House Ear Institute-Organ of Corti 1 (HEI-OC1) cells, phoenix auditory cells, and primary SGNs. Importantly, the anti-cytotoxic effect in neuronal cells was even more pronounced than the effect of sodium thiosulfate (STS), which is currently the only approved prevention option for cisplatin-induced ototoxicity. Finally, we tested the protective effect of Emricasan treatment in the context of another ototoxic drug, i.e., the aminoglycoside antibiotic neomycin, and again found a significant increase in cell viability when the cultures were co-treated with Emricasan. These results suggest a promising strategy to prevent ototoxicity in patients by temporarily blocking the apoptotic pathway when applying cisplatin or aminoglycoside antibiotics. KEY MESSAGES: Anti-apoptotic small molecules can reduce cisplatin-induced toxicity. Emricasan can effectively exert its anti-apoptotic effect on cochlear cells. Strong protection from cisplatin- and neomycin-induced cytotoxicity with Emricasan. Sodium thiosulfate and Emricasan provide similar protective effects to cisplatin-treated cells. Emricasan is more potent than sodium thiosulfate in reducing neomycin-induced cytotoxicity.


Asunto(s)
Inhibidores de Caspasas , Cisplatino , Neomicina , Cisplatino/efectos adversos , Cisplatino/toxicidad , Cisplatino/farmacología , Animales , Neomicina/farmacología , Neomicina/toxicidad , Inhibidores de Caspasas/farmacología , Ratones , Apoptosis/efectos de los fármacos , Cóclea/efectos de los fármacos , Cóclea/citología , Supervivencia Celular/efectos de los fármacos , Células Ciliadas Auditivas/efectos de los fármacos , Ganglio Espiral de la Cóclea/efectos de los fármacos , Ototoxicidad/etiología , Ototoxicidad/prevención & control , Antineoplásicos/farmacología , Antineoplásicos/toxicidad , Línea Celular , Células Cultivadas
5.
Eur Respir J ; 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39174284

RESUMEN

RATIONALE AND OBJECTIVE: Cystic fibrosis (CF) is caused by mutations in the CF Transmembrane Conductance Regulator (CFTR) gene. CFTR modulators offer significant improvements, but approximately 10% of patients remain nonresponsive or are intolerant. This study provides an analysis of rSIV.F/HN, a lentiviral vector optimized for lung delivery, including CFTR protein expression, functional correction of CFTR defects and genomic integration site analysis in preparation for a first-in-human clinical trial. METHODS: Air-liquid interface cultures of primary human bronchial epithelial cells (HBEC) from CF patients (F508del/F508del), as well as a CFTR-deficient immortalized human lung epithelial cell line mimicking Class I (CFTR-null) homozygous mutations, were used to assess transduction efficiency. Quantification methods included a novel proximity ligation assay (PLA) for CFTR protein expression. For assessment of CFTR channel activity, Ussing chamber studies were conducted. The safety profile was assessed using integration site analysis and in vitro insertional mutagenesis studies. RESULTS: rSIV.F/HN expressed CFTR and restored CFTR-mediated chloride currents to physiological levels in primary F508del/F508del HBECs as well as in a Class I cells. In contrast, the latter could not be achieved by small-molecule CFTR modulators, underscoring the potential of gene therapy for this mutation class. Combination of rSIV.F/HN-CFTR with the potentiator ivacaftor showed a greater than additive effect. The genomic integration pattern showed no site predominance (frequency of occurrence ≤10%), and a low risk of insertional mutagenesis was observed in an in vitro immortalization assay. CONCLUSIONS: The results underscore rSIV.F/HN as a promising gene therapy vector for CF, providing a mutation-agnostic treatment option.

6.
Cells ; 13(14)2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39056797

RESUMEN

BACKGROUND: Solid organ transplantation is hindered by immune-mediated chronic graft dysfunction and the side effects of immunosuppressive therapy. Regulatory T cells (Tregs) are crucial for modulating immune responses post-transplantation; however, the transfer of polyspecific Tregs alone is insufficient to induce allotolerance in rodent models. METHODS: To enhance the efficacy of adoptive Treg therapy, we investigated different immune interventions in the recipients. By utilizing an immunogenic skin transplant model and existing transplantation medicine reagents, we facilitated the clinical translation of our findings. Specifically, antigen-specific Tregs were used. RESULTS: Our study demonstrated that combining the available induction therapies with drug-induced T-cell proliferation due to lymphopenia effectively increased the Treg/T effector ratios. This results in significant Treg accumulation within the graft, leading to long-term tolerance after the transfer of antigen-specific Tregs. Importantly, all the animals achieved operational tolerance, which boosted the presence of adoptively transferred Tregs within the graft. CONCLUSIONS: This protocol offers a means to establish tolerance by utilizing antigen-specific Tregs. These results have promising implications for future trials involving adoptive Treg therapy in organ transplantation.


Asunto(s)
Trasplante de Piel , Linfocitos T Reguladores , Linfocitos T Reguladores/inmunología , Animales , Ratones , Ratones Endogámicos C57BL , Tolerancia al Trasplante/inmunología , Traslado Adoptivo , Ratones Endogámicos BALB C , Tolerancia Inmunológica , Supervivencia de Injerto/inmunología
7.
Hum Gene Ther ; 35(15-16): 527-542, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39049734

RESUMEN

Regulators and industry are actively seeking improvements and alternatives to current models and approaches to evaluate potential carcinogenicity of gene therapies (GTs). A meeting of invited experts was organized by NC3Rs/UKEMS (London, March 2023) to discuss this topic. This article describes the consensus reached among delegates on the definition of vector genotoxicity, sources of uncertainty, suitable toxicological endpoints for genotoxic assessment of GTs, and future research needs. The collected recommendations should inform the further development of regulatory guidelines for the nonclinical toxicological assessment of GT products.


Asunto(s)
Terapia Genética , Terapia Genética/efectos adversos , Terapia Genética/métodos , Humanos , Factores de Riesgo , Animales , Vectores Genéticos/efectos adversos , Consenso , Neoplasias/terapia , Neoplasias/genética , Medición de Riesgo
8.
Cardiovasc Res ; 120(11): 1295-1311, 2024 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-38836637

RESUMEN

AIMS: Understanding the molecular identity of human pluripotent stem cell (hPSC)-derived cardiac progenitors and mechanisms controlling their proliferation and differentiation is valuable for developmental biology and regenerative medicine. METHODS AND RESULTS: Here, we show that chemical modulation of histone acetyl transferases (by IQ-1) and WNT (by CHIR99021) synergistically enables the transient and reversible block of directed cardiac differentiation progression on hPSCs. The resulting stabilized cardiovascular progenitors (SCPs) are characterized by ISL1pos/KI-67pos/NKX2-5neg expression. In the presence of the chemical inhibitors, SCPs maintain a proliferation quiescent state. Upon small molecules, removal SCPs resume proliferation and concomitant NKX2-5 up-regulation triggers cell-autonomous differentiation into cardiomyocytes. Directed differentiation of SCPs into the endothelial and smooth muscle lineages confirms their full developmental potential typical of bona fide cardiovascular progenitors. Single-cell RNA-sequencing-based transcriptional profiling of our in vitro generated human SCPs notably reflects the dynamic cellular composition of E8.25-E9.25 posterior second heart field of mouse hearts, hallmarked by nuclear receptor sub-family 2 group F member 2 expression. Investigating molecular mechanisms of SCP stabilization, we found that the cell-autonomously regulated retinoic acid and BMP signalling is governing SCP transition from quiescence towards proliferation and cell-autonomous differentiation, reminiscent of a niche-like behaviour. CONCLUSION: The chemically defined and reversible nature of our stabilization approach provides an unprecedented opportunity to dissect mechanisms of cardiovascular progenitors' specification and reveal their cellular and molecular properties.


Asunto(s)
Diferenciación Celular , Proliferación Celular , Regulación del Desarrollo de la Expresión Génica , Proteína Homeótica Nkx-2.5 , Miocitos Cardíacos , Piridinas , Pirimidinas , Humanos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/enzimología , Proteína Homeótica Nkx-2.5/metabolismo , Proteína Homeótica Nkx-2.5/genética , Pirimidinas/farmacología , Piridinas/farmacología , Animales , Linaje de la Célula , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Línea Celular , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/enzimología , Proteínas con Homeodominio LIM/metabolismo , Proteínas con Homeodominio LIM/genética , Fenotipo , Vía de Señalización Wnt , Corazón , Factores de Tiempo , Ratones , Miocitos del Músculo Liso/metabolismo , Análisis de la Célula Individual
9.
Eur J Immunol ; 54(7): e2451056, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38593351

RESUMEN

COVID-19 induces re-circulating long-lived memory B cells (MBC) that, upon re-encounter with the pathogen, are induced to mount immunoglobulin responses. During convalescence, antibodies are subjected to affinity maturation, which enhances the antibody binding strength and generates new specificities that neutralize virus variants. Here, we performed a single-cell RNA sequencing analysis of spike-specific B cells from a SARS-CoV-2 convalescent subject. After COVID-19 vaccination, matured infection-induced MBC underwent recall and differentiated into plasmablasts. Furthermore, the transcriptomic profiles of newly activated B cells transiently shifted toward the ones of atypical and CXCR3+ B cells and several B-cell clonotypes massively expanded. We expressed monoclonal antibodies (mAbs) from all B-cell clones from the largest clonotype that used the VH3-53 gene segment. The in vitro analysis revealed that some somatic hypermutations enhanced the neutralization breadth of mAbs in a putatively stochastic manner. Thus, somatic hypermutation of B-cell clonotypes generates an anticipatory memory that can neutralize new virus variants.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19 , SARS-CoV-2 , Hipermutación Somática de Inmunoglobulina , SARS-CoV-2/inmunología , Humanos , Hipermutación Somática de Inmunoglobulina/genética , COVID-19/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Células B de Memoria/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Anticuerpos Monoclonales/inmunología , Linfocitos B/inmunología , Región Variable de Inmunoglobulina/genética , Región Variable de Inmunoglobulina/inmunología , Memoria Inmunológica/inmunología , Vacunas contra la COVID-19/inmunología
10.
Clin Cancer Res ; 30(16): 3564-3577, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38593230

RESUMEN

PURPOSE: Cytokine-engineering of chimeric antigen receptor-redirected T cells (CAR T cells) is a promising principle to overcome the limited activity of canonical CAR T cells against solid cancers. EXPERIMENTAL DESIGN: We developed an investigational medicinal product, GD2IL18CART, consisting of CAR T cells directed against ganglioside GD2 with CAR-inducible IL18 to enhance their activation response and cytolytic effector functions in the tumor microenvironment. To allow stratification of patients according to tumor GD2 expression, we established and validated immunofluorescence detection of GD2 on paraffin-embedded tumor tissues. RESULTS: Lentiviral all-in-one vector engineering of human T cells with the GD2-specific CAR with and without inducible IL18 resulted in cell products with comparable proportions of CAR-expressing central memory T cells. Production of IL18 strictly depends on GD2 antigen engagement. GD2IL18CART respond to interaction with GD2-positive tumor cells with higher IFNγ and TNFα cytokine release and more effective target cytolysis compared with CAR T cells without inducible IL18. GD2IL18CART further have superior in vivo antitumor activity, with eradication of GD2-positive tumor xenografts. Finally, we established GMP-compliant manufacturing of GD2IL18CART and found it to be feasible and efficient at clinical scale. CONCLUSIONS: These results pave the way for clinical investigation of GD2IL18CART in pediatric and adult patients with neuroblastoma and other GD2-positive cancers (EU CT 2022- 501725-21-00). See related commentary by Locatelli and Quintarelli, p. 3361.


Asunto(s)
Gangliósidos , Inmunoterapia Adoptiva , Interleucina-18 , Neoplasias , Receptores Quiméricos de Antígenos , Linfocitos T , Ensayos Antitumor por Modelo de Xenoinjerto , Humanos , Animales , Gangliósidos/inmunología , Interleucina-18/metabolismo , Receptores Quiméricos de Antígenos/inmunología , Receptores Quiméricos de Antígenos/metabolismo , Ratones , Inmunoterapia Adoptiva/métodos , Linfocitos T/inmunología , Linfocitos T/metabolismo , Neoplasias/inmunología , Neoplasias/terapia , Neoplasias/patología , Línea Celular Tumoral , Microambiente Tumoral/inmunología , Femenino
11.
Nat Genet ; 56(5): 953-969, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38627598

RESUMEN

The mechanism by which mammalian liver cell responses are coordinated during tissue homeostasis and perturbation is poorly understood, representing a major obstacle in our understanding of many diseases. This knowledge gap is caused by the difficulty involved with studying multiple cell types in different states and locations, particularly when these are transient. We have combined Stereo-seq (spatiotemporal enhanced resolution omics-sequencing) with single-cell transcriptomic profiling of 473,290 cells to generate a high-definition spatiotemporal atlas of mouse liver homeostasis and regeneration at the whole-lobe scale. Our integrative study dissects in detail the molecular gradients controlling liver cell function, systematically defining how gene networks are dynamically modulated through intercellular communication to promote regeneration. Among other important regulators, we identified the transcriptional cofactor TBL1XR1 as a rheostat linking inflammation to Wnt/ß-catenin signaling for facilitating hepatocyte proliferation. Our data and analytical pipelines lay the foundation for future high-definition tissue-scale atlases of organ physiology and malfunction.


Asunto(s)
Homeostasis , Regeneración Hepática , Hígado , Vía de Señalización Wnt , Animales , Regeneración Hepática/genética , Ratones , Hígado/metabolismo , Vía de Señalización Wnt/genética , Hepatocitos/metabolismo , Hepatocitos/citología , Proliferación Celular/genética , Análisis de la Célula Individual , Redes Reguladoras de Genes , Perfilación de la Expresión Génica/métodos , Transcriptoma , Ratones Endogámicos C57BL , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Masculino
12.
Mol Ther Nucleic Acids ; 35(1): 102157, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38450280

RESUMEN

Cisplatin is a highly effective chemotherapeutic agent, but it can cause sensorineural hearing loss (SNHL) in patients. Cisplatin-induced ototoxicity is closely related to the accumulation of reactive oxygen species (ROS) and subsequent death of hair cells (HCs) and spiral ganglion neurons (SGNs). Despite various strategies to combat ototoxicity, only one therapeutic agent has thus far been clinically approved. Therefore, we have developed a gene therapy concept to protect cochlear cells from cisplatin-induced toxicity. Self-inactivating lentiviral (LV) vectors were used to ectopically express various antioxidant enzymes or anti-apoptotic proteins to enhance the cellular ROS scavenging or prevent apoptosis in affected cell types. In direct comparison, anti-apoptotic proteins mediated a stronger reduction in cytotoxicity than antioxidant enzymes. Importantly, overexpression of the most promising candidate, Bcl-xl, achieved an up to 2.5-fold reduction in cisplatin-induced cytotoxicity in HEI-OC1 cells, phoenix auditory neurons, and primary SGN cultures. BCL-XL protected against cisplatin-mediated tissue destruction in cochlear explants. Strikingly, in vivo application of the LV BCL-XL vector improved hearing and increased HC survival in cisplatin-treated mice. In conclusion, we have established a preclinical gene therapy approach to protect mice from cisplatin-induced ototoxicity that has the potential to be translated to clinical use in cancer patients.

14.
PLoS One ; 19(3): e0298542, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38457474

RESUMEN

Drug-based antiretroviral therapies (ART) efficiently suppress HIV replication in humans, but the virus persists as integrated proviral reservoirs in small numbers of cells. Importantly, ART cannot eliminate HIV from an infected individual, since it does not target the integrated provirus. Therefore, genome editing-based strategies that can inactivate or excise HIV genomes would provide the technology for novel curative therapies. In fact, the HIV-1 LTR-specific designer-recombinase Brec1 has been shown to remove integrated proviruses from infected cells and is highly efficacious on clinical HIV-1 isolates in vitro and in vivo, suggesting that Brec1 has the potential for clinical development of advanced HIV-1 eradication strategies in people living with HIV. In line with the preparation of a first-in-human advanced therapy medicinal product gene therapy trial, we here present an extensive preclinical evaluation of Brec1 and lentiviral vectors expressing the Brec1 transgene. This included detailed functional analysis of potential genomic off-target sites, assessing vector safety by investigating vector copy number (VCN) and the risk for potential vector-related insertional mutagenesis, as well as analyzing the potential of Brec1 to trigger an undesired strong T cell immune response. In conclusion, the antiviral designer-recombinase Brec1 is shown to lack any detectable cytopathic, genotoxic or T cell-related immunogenic effects, thereby meeting an important precondition for clinical application of the therapeutic lentiviral vector LV-Brec1 in novel HIV-1 curative strategies.


Asunto(s)
Infecciones por VIH , VIH-1 , Humanos , Lentivirus/genética , Lentivirus/metabolismo , Recombinasas/metabolismo , VIH-1/fisiología , Provirus/genética , Duplicado del Terminal Largo de VIH/genética , Infecciones por VIH/terapia , Vectores Genéticos/genética
15.
HardwareX ; 17: e00509, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38327676

RESUMEN

This paper aims to provide the details for making affordable single and multichannel liquid aspirators for wet labs. A liquid aspirator is a basic laboratory device that can cost several hundred Euros. We present a < €25 3D print solution that performs equally well in daily lab routines and is compatible with various vacuum sources, including an aquarium pump or household vacuum cleaner. Presently, commercial aspirators cost more than a decent entry-level 3D printer capable of producing all the parts listed in this manuscript. The models were designed with Tinkercad, with easy printing and minimal support in mind. The versatility and the ultra-low-cost solution we presented could ease the daily workflow of researchers in various research fields. Furthermore, it is valuable to high school or undergraduate student labs and community wet labs for science enthusiasts, where funding is generally limited.

16.
Int J Mol Sci ; 25(2)2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38256061

RESUMEN

The CRISPR-Cas12a platform has attracted interest in the genome editing community because the prototypical Acidaminococcus Cas12a generates a staggered DNA double-strand break upon binding to an AT-rich protospacer-adjacent motif (PAM, 5'-TTTV). The broad application of the platform in primary human cells was enabled by the development of an engineered version of the natural Cas12a protein, called Cas12a Ultra. In this study, we confirmed that CRISPR-Cas12a Ultra ribonucleoprotein complexes enabled allelic gene disruption frequencies of over 90% at multiple target sites in human T cells, hematopoietic stem and progenitor cells (HSPCs), and induced pluripotent stem cells (iPSCs). In addition, we demonstrated, for the first time, the efficient knock-in potential of the platform in human iPSCs and achieved targeted integration of a GFP marker gene into the AAVS1 safe harbor site and a CSF2RA super-exon into CSF2RA in up to 90% of alleles without selection. Clonal analysis revealed bi-allelic integration in >50% of the screened iPSC clones without compromising their pluripotency and genomic integrity. Thus, in combination with the adeno-associated virus vector system, CRISPR-Cas12a Ultra provides a highly efficient genome editing platform for performing targeted knock-ins in human iPSCs.


Asunto(s)
Células Madre Pluripotentes Inducidas , Células Madre Pluripotentes , Humanos , Sistemas CRISPR-Cas , Células Madre Hematopoyéticas , Alelos
17.
mBio ; 15(2): e0330823, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38275838

RESUMEN

The highly prevalent herpes simplex virus type 1 (HSV-1) causes a range of diseases, including cold sores, blinding keratitis, and life-threatening encephalitis. HSV-1 initially replicates in epithelial cells, enters the peripheral nervous system via neurites, and establishes lifelong infection in the neuronal cell bodies. Neurites are highly dynamic structures that grow or retract in response to attractive or repulsive cues, respectively. Here, we show that infection with HSV-1, but not with a mutant virus lacking glycoprotein G (gG), reduced the repulsive effect of epithelial cells on neurite outgrowth and facilitated HSV-1 invasion of neurons. HSV-1 gG was required and sufficient to induce neurite outgrowth by modifying the protein composition of extracellular vesicles, increasing the amount of neurotrophic and neuroprotective proteins, including galectin-1. Antibodies directed against galectin-1 neutralized the capacity of extracellular vesicles released from HSV-1-infected cells to promote neurite outgrowth. Our study provides new insights into the neurotropism of HSV-1 and identifies a viral protein that modifies the protein composition of extracellular vesicles to stimulate neurite outgrowth and invasion of the nervous system.IMPORTANCEHerpes simplex virus type 1 (HSV-1) must infect neurites (or nerve endings) to establish a chronic infection in neurons. Neurites are highly dynamic structures that retract or grow in the presence of repulsive or attractive proteins. Some of these proteins are released by epithelial cells in extracellular vesicles and act upon interaction with their receptor present on neurites. We show here that HSV-1 infection of epithelial cells modulated their effect on neurites, increasing neurite growth. Mechanistically, HSV-1 glycoprotein G (gG) modifies the protein composition of extracellular vesicles released by epithelial cells, increasing the amount of attractive proteins that enhance neurite outgrowth and facilitate neuronal infection. These results could inform of therapeutic strategies to block HSV-1 induction of neurite outgrowth and, thereby, neuronal infection.


Asunto(s)
Enfermedades Transmisibles , Vesículas Extracelulares , Herpes Simple , Herpesvirus Humano 1 , Humanos , Herpesvirus Humano 1/fisiología , Galectina 1/metabolismo , Vesículas Extracelulares/metabolismo , Proyección Neuronal , Glicoproteínas/metabolismo
18.
Clin Immunol ; 260: 109902, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38218210

RESUMEN

The devastating impact of COVID-19 on global health shows the need to increase our pandemic preparedness. Recombinant therapeutic antibodies were successfully used to treat and protect at-risk patients from COVID-19. However, the currently circulating Omicron subvariants of SARS-CoV-2 are largely resistant to therapeutic antibodies, and novel approaches to generate broadly neutralizing antibodies are urgently needed. Here, we describe a tetravalent bispecific antibody, A7A9 TVB, which actively neutralized many SARS-CoV-2 variants of concern, including early Omicron subvariants. Interestingly, A7A9 TVB neutralized more variants at lower concentration as compared to the combination of its parental monoclonal antibodies, A7K and A9L. A7A9 also reduced the viral load of authentic Omicron BA.1 virus in infected pseudostratified primary human nasal epithelial cells. Overall, A7A9 displayed the characteristics of a potent broadly neutralizing antibody, which may be suitable for prophylactic and therapeutic applications in the clinics, thus highlighting the usefulness of an effective antibody-designing approach.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Anticuerpos Monoclonales/uso terapéutico , Padres , Anticuerpos Antivirales/uso terapéutico , Anticuerpos Neutralizantes/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA