Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Res Sq ; 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38585715

RESUMEN

Hydrogen Peroxide (H2O2) is a central oxidant in redox biology due to its pleiotropic role in physiology and pathology. However, real-time monitoring of H2O2 in living cells and tissues remains a challenge. We address this gap with the development of an optogenetic hydRogen perOxide Sensor (oROS), leveraging the bacterial peroxide binding domain OxyR. Previously engineered OxyR-based fluorescent peroxide sensors lack the necessary sensitivity and response speed for effective real-time monitoring. By structurally redesigning the fusion of Escherichia coli (E. coli) ecOxyR with a circularly permutated green fluorescent protein (cpGFP), we created a novel, green-fluorescent peroxide sensor oROS-G. oROS-G exhibits high sensitivity and fast on-and-off kinetics, ideal for monitoring intracellular H2O2 dynamics. We successfully tracked real-time transient and steady-state H2O2 levels in diverse biological systems, including human stem cell-derived neurons and cardiomyocytes, primary neurons and astrocytes, and mouse brain ex vivo and in vivo. These applications demonstrate oROS's capabilities to monitor H2O2 as a secondary response to pharmacologically induced oxidative stress and when adapting to varying metabolic stress. We showcased the increased oxidative stress in astrocytes via Aß-putriscine-MAOB axis, highlighting the sensor's relevance in validating neurodegenerative disease models. Lastly, we demonstrated acute opioid-induced generation of H2O2 signal in vivo which highlights redox-based mechanisms of GPCR regulation. oROS is a versatile tool, offering a window into the dynamic landscape of H2O2 signaling. This advancement paves the way for a deeper understanding of redox physiology, with significant implications for understanding diseases associated with oxidative stress, such as cancer, neurodegenerative, and cardiovascular diseases.

2.
bioRxiv ; 2024 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-38352381

RESUMEN

Hydrogen Peroxide (H2O2) is a central oxidant in redox biology due to its pleiotropic role in physiology and pathology. However, real-time monitoring of H2O2 in living cells and tissues remains a challenge. We address this gap with the development of an optogenetic hydRogen perOxide Sensor (oROS), leveraging the bacterial peroxide binding domain OxyR. Previously engineered OxyR-based fluorescent peroxide sensors lack the necessary sensitivity or response speed for effective real-time monitoring. By structurally redesigning the fusion of Escherichia coli (E. coli) ecOxyR with a circularly permutated green fluorescent protein (cpGFP), we created a novel, green-fluorescent peroxide sensor oROS-G. oROS-G exhibits high sensitivity and fast on-and-off kinetics, ideal for monitoring intracellular H2O2 dynamics. We successfully tracked real-time transient and steady-state H2O2 levels in diverse biological systems, including human stem cell-derived neurons and cardiomyocytes, primary neurons and astrocytes, and mouse neurons and astrocytes in ex vivo brain slices. These applications demonstrate oROS's capabilities to monitor H2O2 as a secondary response to pharmacologically induced oxidative stress, G-protein coupled receptor (GPCR)-induced cell signaling, and when adapting to varying metabolic stress. We showcased the increased oxidative stress in astrocytes via Aß-putriscine-MAOB axis, highlighting the sensor's relevance in validating neurodegenerative disease models. oROS is a versatile tool, offering a window into the dynamic landscape of H2O2 signaling. This advancement paves the way for a deeper understanding of redox physiology, with significant implications for diseases associated with oxidative stress, such as cancer, neurodegenerative disorders, and cardiovascular diseases.

3.
Neuropsychopharmacology ; 46(13): 2330-2339, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34545197

RESUMEN

Following repeated opioid use, some dependent individuals experience persistent cognitive deficits that contribute to relapse of drug-taking behaviors, and one component of this response may be mediated by the endogenous dynorphin/kappa opioid system in neocortex. In C57BL/6 male mice, we find that acute morphine withdrawal evokes dynorphin release in the medial prefrontal cortex (PFC) and disrupts cognitive function by activation of local kappa opioid receptors (KORs). Immunohistochemical analyses using a phospho-KOR antibody confirmed that both withdrawal-induced and optically evoked dynorphin release activated KOR in PFC. Using a genetically encoded sensor based on inert KOR (kLight1.2a), we revealed the in vivo dynamics of endogenous dynorphin release in the PFC. Local activation of KOR in PFC produced multi-phasic disruptions of memory processing in an operant-delayed alternation behavioral task, which manifest as reductions in response number and accuracy during early and late phases of an operant session. Local pretreatment in PFC with the selective KOR antagonist norbinaltorphimine (norBNI) blocked the disruptive effect of systemic KOR activation during both early and late phases of the session. The early, but not late phase disruption was blocked by viral excision of PFC KORs, suggesting an anatomically dissociable contribution of pre- and postsynaptic KORs. Naloxone-precipitated withdrawal in morphine-dependent mice or optical stimulation of pdynCre neurons using Channelrhodopsin-2 disrupted delayed alternation performance, and the dynorphin-induced effect was blocked by local norBNI. Our findings describe a mechanism for control of cortical function during opioid dependence and suggest that KOR antagonism could promote abstinence.


Asunto(s)
Analgésicos Opioides , Dinorfinas , Animales , Cognición , Dinorfinas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Naltrexona , Corteza Prefrontal/metabolismo , Receptores Opioides kappa/metabolismo
4.
Mol Pharmacol ; 98(5): 548-558, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32913138

RESUMEN

The prototypical member of the receptor-inactivating kappa opioid receptor (KOR) antagonists, norbinaltorphimine (norBNI), produces prolonged receptor inactivation by a cJun kinase mechanism. These antagonists have potential therapeutic utility in the treatment of stress disorders; however, additional preclinical characterization is necessary to understand important aspects of their action. In this study, we report that norBNI does not work as effectively in female mice as in males because of estrogen regulation of G protein receptor kinase (GRK); pretreatment of ovary-intact female mice with the selective GRK2/3 inhibitor, Compound 101, made females equally sensitive to norBNI as males. Prior observations suggested that in vivo treatment with norBNI does not produce long-lasting inhibition of KOR regulation of dopamine release in the nucleus accumbens. We assessed the persistence of norBNI receptor inactivation in subcellular compartments. Fast-scan cyclic voltammetry recordings confirmed that presynaptic inhibition of dopamine release by the KOR agonist U69,593 was not blocked by in vivo pretreatment with norBNI under conditions that prevented KOR-mediated aversion and analgesia. We employed a novel in vivo proxy sensor of KOR activation, adenovirus associated double floxed inverted-HyPerRed, and demonstrated that KOR activation stimulates cJun kinase-dependent reactive oxygen species (ROS) production in somatic regions of ventral tegmental area dopamine neurons, but did not activate ROS production in dopamine terminals. The compartment selective action helps explain how dopamine somatic, but not terminally expressed, KORs are inactivated by norBNI. These results further elucidate molecular signaling mechanisms mediating receptor-inactivating KOR antagonist action and advance medication development for this novel class of stress-resilience medications. SIGNIFICANCE STATEMENT: Kappa opioid receptor (KOR) antagonists are being developed as novel proresilience therapeutics for the treatment of mood and substance use disorders. This study showed that the long-acting KOR antagonists are affected by both the sex of the animal and the subcellular compartment in which the receptor is expressed.


Asunto(s)
Antagonistas de Narcóticos/farmacología , Receptores Opioides kappa/metabolismo , Analgésicos Opioides/farmacología , Animales , Dopamina/metabolismo , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Naltrexona/análogos & derivados , Naltrexona/farmacología , Fosforilación/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos
5.
J Biol Chem ; 294(45): 16884-16896, 2019 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-31575661

RESUMEN

Activation of the mitogen-activated protein kinase (MAPK) c-Jun N-terminal kinase (JNK) by the Gi/o protein-coupled κ opioid receptor (KOR), µ opioid, and D2 dopamine receptors stimulates peroxiredoxin 6 (PRDX6)-mediated production of reactive oxygen species (ROS). ROS production by KOR-inactivating antagonists norbinaltorphimine (norBNI) and JDTic blocks Gαi protein activation, but the signaling mechanisms and consequences of JNK activation by KOR agonists remain uncharacterized. Binding of arrestins to KOR causes desensitization of G protein signaling and acts as a scaffold to initiate MAPK activation. Here, we found that the KOR agonists U50,488 and dynorphin B stimulated biphasic JNK activation with an early arrestin-independent phase, requiring the small G protein RAC family small GTPase 1 (RAC1) and protein kinase C (PKC), and a later arrestin-scaffolded phase, requiring RAC1 and Ras homolog family member (RHO) kinase. JNK activation by U50,488 and dynorphin B also stimulated PRDX6-dependent ROS production but with an inverted U-shaped dose-response relationship. KOR agonist-induced ROS generation resulted from the early arrestin-independent phase of JNK activation, and this ROS response was suppressed by arrestin-dependent activation of the MAPK p38. The apparent balance between p38 MAPK and JNK/ROS signaling has important physiological implications for understanding of dynorphin activities during the stress response. To visualize these activities, we monitored KOR agonist-mediated activation of ROS in transfected live cells by two fluorescent sensors, CellROX Green and HyPerRed. These findings establish an important aspect of opioid receptor signaling and suggest that ROS induction may be part of the physiological response to KOR activation.


Asunto(s)
Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Receptores Opioides kappa/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Activación Enzimática/efectos de los fármacos , Células HEK293 , Humanos , Fosforilación/efectos de los fármacos , Receptores Opioides kappa/agonistas
6.
J Neurosci ; 38(37): 8031-8043, 2018 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-30076211

RESUMEN

Activation of κ opioid receptors (KORs) produces analgesia and aversion via distinct intracellular signaling pathways, but whether G protein-biased KOR agonists can be designed to have clinical utility will depend on a better understanding of the signaling mechanisms involved. We found that KOR activation produced conditioned place aversion and potentiated CPP for cocaine in male and female C57BL/6N mice. Consistent with this, males and females both showed arrestin-mediated increases in phospho-p38 MAPK following KOR activation. Unlike in males, however, KOR activation had inconsistent analgesic effects in females and KOR increased Gßγ-mediated ERK phosphorylation in males, but not females. KOR desensitization was not responsible for the lack of response in females because neither Grk3 nor Pdyn gene knock-out enhanced analgesia. Instead, responsiveness was estrous cycle dependent because KOR analgesia was evident during low estrogen phases of the cycle and in ovariectomized (OVX) females. Estradiol treatment of OVX females suppressed KOR-mediated analgesia, demonstrating that estradiol was sufficient to blunt Gßγ-mediated KOR signals. G protein-coupled receptor kinase 2 (GRK2) is known to regulate ERK activation, and we found that the inhibitory, phosphorylated form of GRK2 was significantly higher in intact females. GRK2/3 inhibition by CMPD101 increased KOR stimulation of phospho-ERK in females, decreased sex differences in KOR-mediated inhibition of dopamine release, and enhanced mu opioid receptor and KOR-mediated analgesia in females. In OVX females, estradiol increased the association between GRK2 and Gßγ. These studies suggest that estradiol, through increased phosphorylation of GRK2 and possible sequestration of Gßγ by GRK2, blunts G protein-mediated signals.SIGNIFICANCE STATEMENT Chronic pain disorders are more prevalent in females than males, but opioid receptor agonists show inconsistent analgesic efficacy in females. κ opioid receptor (KOR) agonists have been tested in clinical trials for treating pain disorders based on their analgesic properties and low addictive potential. However, the molecular mechanisms underlying sex differences in KOR actions were previously unknown. Our studies identify an intracellular mechanism involving estradiol regulation of G protein-coupled receptor kinase 2 that is responsible for sexually dimorphic analgesic responses following opioid receptor activation. Understanding this mechanism will be critical for developing effective nonaddictive opioid analgesics for use in women and characterizing sexually dimorphic effects in other inhibitory G protein-coupled receptor signaling responses.


Asunto(s)
Reacción de Prevención/fisiología , Condicionamiento Operante/fisiología , Estradiol/farmacología , Receptores Opioides kappa/metabolismo , 3,4-Dicloro-N-metil-N-(2-(1-pirrolidinil)-ciclohexil)-bencenacetamida, (trans)-Isómero/farmacología , Analgesia , Analgésicos Opioides/farmacología , Animales , Reacción de Prevención/efectos de los fármacos , Cocaína/farmacología , Condicionamiento Operante/efectos de los fármacos , Ciclo Estral , Femenino , Masculino , Ratones , Morfina/farmacología , Naltrexona/análogos & derivados , Naltrexona/farmacología , Antagonistas de Narcóticos/farmacología , Narcóticos/farmacología , Ovariectomía , Fosforilación , Receptores Opioides kappa/agonistas , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
7.
Nat Commun ; 8(1): 743, 2017 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-28963507

RESUMEN

Inactivation of opioid receptors limits the therapeutic efficacy of morphine-like analgesics and mediates the long duration of kappa opioid antidepressants by an uncharacterized, arrestin-independent mechanism. Here we use an iterative, discovery-based proteomic approach to show that following opioid administration, peroxiredoxin 6 (PRDX6) is recruited to the opioid receptor complex by c-Jun N-terminal kinase (JNK) phosphorylation. PRDX6 activation generates reactive oxygen species via NADPH oxidase, reducing the palmitoylation of receptor-associated Gαi in a JNK-dependent manner. Selective inhibition of PRDX6 blocks Gαi depalmitoylation, prevents the enhanced receptor G-protein association and blocks acute analgesic tolerance to morphine and kappa opioid receptor inactivation in vivo. Opioid stimulation of JNK also inactivates dopamine D2 receptors in a PRDX6-dependent manner. We show that the loss of this lipid modification distorts the receptor G-protein association, thereby preventing agonist-induced guanine nucleotide exchange. These findings establish JNK-dependent PRDX6 recruitment and oxidation-induced Gαi depalmitoylation as an additional mechanism of Gαi-G-protein-coupled receptor inactivation.Opioid receptors are important modulators of nociceptive pain. Here the authors show that opioid receptor activation recruits peroxiredoxin 6 (PRDX6) to the receptor-Gαi complex by c-Jun N-terminal kinase, resulting in Gαi depalmitoylation and enhanced receptor-Gαi association.


Asunto(s)
Analgésicos Opioides/farmacología , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/efectos de los fármacos , Proteínas Quinasas JNK Activadas por Mitógenos/efectos de los fármacos , Peroxiredoxina VI/efectos de los fármacos , Receptores de Dopamina D2/efectos de los fármacos , Animales , Bencenoacetamidas/farmacología , Tolerancia a Medicamentos , Encefalina Ala(2)-MeFe(4)-Gli(5)/farmacología , Fentanilo/farmacología , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Ratones , Morfina/farmacología , NADPH Oxidasas/efectos de los fármacos , NADPH Oxidasas/metabolismo , Peroxiredoxina VI/metabolismo , Fosforilación , Pirrolidinas/farmacología , Especies Reactivas de Oxígeno/metabolismo , Receptores de Dopamina D2/metabolismo , Receptores Opioides/efectos de los fármacos , Receptores Opioides/metabolismo , Receptores Opioides kappa/efectos de los fármacos , Receptores Opioides kappa/metabolismo , Receptores Opioides mu/efectos de los fármacos , Receptores Opioides mu/metabolismo
8.
Cell Signal ; 32: 59-65, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28088389

RESUMEN

Nalfurafine is a moderately selective kappa opioid receptor (KOR) analgesic with low incidence of dysphoric side effects in clinical development for the treatment of uremic pruritis. The basis for its reduced dysphoric effect compared to other KOR agonists is not clear, but prior studies suggest that the aversive properties of KOR agonists require p38α MAPK activation through an arrestin-dependent mechanism. To determine whether nalfurafine is a functionally selective KOR agonist, we measured its potency to activate the G protein-dependent early phase of Extracellular Signal-Regulated Kinase (ERK1/2) phosphorylation and the arrestin-dependent late phase of p38 MAPK signaling. Nalfurafine was approximately 250 fold more potent for ERK1/2 activation as compared to p38 MAPK activation in human KOR (hKOR) expressing HEK293 cells, and approximately 20 fold more potent for ERK1/2 activation than p38 activation in rodent KOR (rKOR) expressing HEK293 cells. The 10-fold greater G-bias at the hKOR than rKOR was unexpected, however the G protein biased effect of nalfurafine is consistent with its reduced dysphoric effects in human and rodent models. Although nalfurafine is reported to have low receptor selectivity in radioligand binding assays, its antinociceptive effect was blocked by the selective KOR antagonist norbinaltorphimine. Nalfurafine pretreatment also resulted in a KOR-dependent and mu opioid receptor-independent reduction in scratching induced by 5'-GNTI. These findings suggest that nalfurafine is a functionally selective KOR agonist and that KOR agonists able to selectively activate G protein signaling without activating p38α MAPK may have therapeutic potential as non-dysphoric antipruritic analgesics.


Asunto(s)
Proteínas de Unión al GTP/agonistas , Morfinanos/farmacología , Receptores Opioides kappa/agonistas , Compuestos de Espiro/farmacología , Animales , Tolerancia a Medicamentos , Activación Enzimática/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Proteínas de Unión al GTP/metabolismo , Células HEK293 , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Morfinanos/uso terapéutico , Prurito/tratamiento farmacológico , Prurito/patología , Receptores Opioides kappa/metabolismo , Receptores Opioides mu/metabolismo , Transducción de Señal/efectos de los fármacos , Compuestos de Espiro/uso terapéutico , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
9.
J Neurosci ; 35(37): 12917-31, 2015 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-26377476

RESUMEN

The endogenous dynorphin-κ opioid receptor (KOR) system encodes the dysphoric component of the stress response and controls the risk of depression-like and addiction behaviors; however, the molecular and neural circuit mechanisms are not understood. In this study, we report that KOR activation of p38α MAPK in ventral tegmental (VTA) dopaminergic neurons was required for conditioned place aversion (CPA) in mice. Conditional genetic deletion of floxed KOR or floxed p38α MAPK by Cre recombinase expression in dopaminergic neurons blocked place aversion to the KOR agonist U50,488. Selective viral rescue by wild-type KOR expression in dopaminergic neurons of KOR(-/-) mice restored U50,488-CPA, whereas expression of a mutated form of KOR that could not initiate p38α MAPK activation did not. Surprisingly, while p38α MAPK inactivation blocked U50,488-CPA, p38α MAPK was not required for KOR inhibition of evoked dopamine release measured by fast scan cyclic voltammetry in the nucleus accumbens. In contrast, KOR activation acutely inhibited VTA dopaminergic neuron firing, and repeated exposure attenuated the opioid response. This adaptation to repeated exposure was blocked by conditional deletion of p38α MAPK, which also blocked KOR-induced tyrosine phosphorylation of the inwardly rectifying potassium channel (GIRK) subunit Kir3.1 in VTA dopaminergic neurons. Consistent with the reduced response, GIRK phosphorylation at this amino terminal tyrosine residue (Y12) enhances channel deactivation. Thus, contrary to prevailing expectations, these results suggest that κ opioid-induced aversion requires regulation of VTA dopaminergic neuron somatic excitability through a p38α MAPK effect on GIRK deactivation kinetics rather than by presynaptically inhibiting dopamine release. SIGNIFICANCE STATEMENT: Kappa opioid receptor (KOR) agonists have the potential to be effective, nonaddictive analgesics, but their therapeutic utility is greatly limited by adverse effects on mood. Understanding how KOR activation produces dysphoria is key to the development of better analgesics and to defining how the endogenous dynorphin opioids produce their depression-like effects. Results in this study show that the aversive effects of κ receptor activation required arrestin-dependent p38α MAPK activation in dopamine neurons but did not require inhibition of dopamine release in the nucleus accumbens. Thus, contrary to the prevailing view, inhibition of mesolimbic dopamine release does not mediate the aversive effects of KOR activation and functionally selective κ opioids that do not activate arrestin signaling may be effective analgesics lacking dysphoric effects.


Asunto(s)
Reacción de Prevención/fisiología , Dopamina/fisiología , Neuronas Dopaminérgicas/fisiología , Sistema de Señalización de MAP Quinasas/fisiología , Receptores Opioides kappa/fisiología , Área Tegmental Ventral/fisiología , Proteínas Quinasas p38 Activadas por Mitógenos/fisiología , 3,4-Dicloro-N-metil-N-(2-(1-pirrolidinil)-ciclohexil)-bencenacetamida, (trans)-Isómero/farmacología , Potenciales de Acción/efectos de los fármacos , Analgésicos no Narcóticos/farmacología , Animales , Reacción de Prevención/efectos de los fármacos , Condicionamiento Clásico/efectos de los fármacos , Condicionamiento Clásico/fisiología , Dopamina/metabolismo , Activación Enzimática , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/metabolismo , Técnicas de Silenciamiento del Gen , Activación del Canal Iónico/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Núcleo Accumbens/metabolismo , Fosforilación/efectos de los fármacos , Potasio/metabolismo , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Receptores Opioides kappa/deficiencia , Receptores Opioides kappa/genética , Proteínas Recombinantes de Fusión/farmacología , Prueba de Desempeño de Rotación con Aceleración Constante , Neuronas Serotoninérgicas/fisiología , Área Tegmental Ventral/citología , Proteínas Quinasas p38 Activadas por Mitógenos/deficiencia , Proteínas Quinasas p38 Activadas por Mitógenos/genética
10.
Handb Exp Pharmacol ; 219: 281-92, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24292835

RESUMEN

Studies of kappa opioid receptor signaling mechanisms during the last decade have demonstrated that agonist activation of the receptor results in Gßγ-dependent signaling and distinct arrestin-dependent signaling events. Gßγ-dependent signaling results in ion channel regulation causing neuronal inhibition, inhibition of transmitter release, and subsequent analgesic responses. In contrast, arrestin-dependent signaling events result in p38 MAPK activation and subsequent dysphoric and proaddictive behavioral responses. Resolution of these two branches of signaling cascades has enabled strategies designed to identify pathway-selective drugs that may have unique therapeutic utilities.


Asunto(s)
Arrestinas/metabolismo , Receptores Opioides kappa/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Diseño de Fármacos , Subunidades beta de la Proteína de Unión al GTP/metabolismo , Subunidades gamma de la Proteína de Unión al GTP/metabolismo , Humanos , Receptores Opioides kappa/agonistas , Transducción de Señal/fisiología
11.
J Neurosci ; 32(49): 17582-96, 2012 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-23223282

RESUMEN

Activation of the dynorphin/κ-opioid receptor (KOR) system by repeated stress exposure or agonist treatment produces place aversion, social avoidance, and reinstatement of extinguished cocaine place preference behaviors by stimulation of p38α MAPK, which subsequently causes the translocation of the serotonin transporter (SERT, SLC6A4) to the synaptic terminals of serotonergic neurons. In the present study we extend those findings by showing that stress-induced potentiation of cocaine conditioned place preference occurred by a similar mechanism. In addition, SERT knock-out mice did not show KOR-mediated aversion, and selective reexpression of SERT by lentiviral injection into the dorsal raphe restored the prodepressive effects of KOR activation. Kinetic analysis of several neurotransporters demonstrated that repeated swim stress exposure selectively increased the V(max) but not K(m) of SERT without affecting dopamine transport or the high-capacity, low-affinity transporters. Although the serotonergic neurons in the dorsal raphe project throughout the forebrain, a significant stress-induced increase in cell-surface SERT expression was only evident in the ventral striatum, and not in the dorsal striatum, hippocampus, prefrontal cortex, amygdala, or dorsal raphe. Stereotaxic microinjections of the long-lasting KOR antagonist norbinaltorphimine demonstrated that local KOR activation in the nucleus accumbens, but not dorsal raphe, mediated this stress-induced increase in ventral striatal surface SERT expression. Together, these results support the hypothesis that stress-induced activation of the dynorphin/KOR system produces a transient increase in serotonin transport locally in the ventral striatum that may underlie some of the adverse consequences of stress exposure, including the potentiation of the rewarding effects of cocaine.


Asunto(s)
Reacción de Prevención/fisiología , Cocaína/farmacología , Cuerpo Estriado/metabolismo , Dinorfinas/fisiología , Recompensa , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Estrés Psicológico/metabolismo , Estrés Psicológico/psicología , Animales , Reacción de Prevención/efectos de los fármacos , Encéfalo/metabolismo , Dopamina/metabolismo , Dinorfinas/metabolismo , Quinasa 3 del Receptor Acoplado a Proteína-G/genética , Quinasa 3 del Receptor Acoplado a Proteína-G/fisiología , Masculino , Proteínas de Transporte de Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Microinyecciones/métodos , Naltrexona/administración & dosificación , Naltrexona/análogos & derivados , Naltrexona/farmacología , Antagonistas de Narcóticos/administración & dosificación , Antagonistas de Narcóticos/farmacocinética , Nicotina/efectos adversos , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/metabolismo , Núcleos del Rafe/efectos de los fármacos , Núcleos del Rafe/metabolismo , Núcleos del Rafe/fisiología , Receptores Opioides kappa/antagonistas & inhibidores , Receptores Opioides kappa/fisiología , Serotonina/metabolismo , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Síndrome de Abstinencia a Sustancias/metabolismo , Sinaptosomas/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/fisiología
12.
J Biol Chem ; 287(50): 41595-607, 2012 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-23086943

RESUMEN

KOR activation of Gßγ dependent signaling results in analgesia, whereas the dysphoric effects of KOR agonists are mediated by a different pathway involving G protein receptor kinase and non-visual arrestin. Based on this distinction, a partial KOR agonist that does not efficiently activate arrestin-dependent biased signaling may produce analgesia without dysphoria. No KOR-selective partial agonists are currently available, and preclinical assessment is complicated by sequence differences between rodent (r) and human (h) KOR. In this study, we compared the signaling initiated by the available partial agonists. Pentazocine was significantly more potent at activating p38 MAPK in hKOR than rKOR expressed in HEK293 cells but equally potent at arrestin-independent activation of ERK1/2 in hKOR and rKOR. Similarly, butorphanol increased phospho-p38-ir in hKOR-expressing cells but did not activate p38 in rKOR-HEK293. Like pentazocine, butorphanol was equally efficacious at activating ERK1/2 in rKOR and hKOR. In contrast, levorphanol, nalorphine, and U50,488 did not distinguish between hKOR and rKOR in p38 MAPK activation. Consistent with its low potency at p38 activation, pentazocine did not produce conditioned place aversion in mice. hKOR lacks the Ser-369 phosphorylation site in rKOR required for G protein receptor kinase/arrestin-dependent p38 activation, but mutation of the Ser-358 to asparagine in hKOR blocked p38 activation without affecting the acute arrestin-independent activation of ERK1/2. This study shows that hKOR activates p38 MAPK through a phosphorylation and arrestin-dependent mechanism; however, activation differs between hKOR and rKOR for some ligands. These functional selectivity differences have important implications for preclinical screening of partial KOR agonists.


Asunto(s)
Analgésicos Opioides/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Receptores Opioides kappa/metabolismo , Sustitución de Aminoácidos , Animales , Activación Enzimática/efectos de los fármacos , Activación Enzimática/genética , Células HEK293 , Humanos , Ligandos , Sistema de Señalización de MAP Quinasas/genética , Masculino , Ratones , Ratones Noqueados , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Mutación Missense , Fosforilación/efectos de los fármacos , Fosforilación/genética , Receptores Opioides kappa/agonistas , Receptores Opioides kappa/genética , Especificidad de la Especie , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
13.
Proc Natl Acad Sci U S A ; 106(45): 19168-73, 2009 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-19864633

RESUMEN

Although stress has profound effects on motivated behavior, the underlying mechanisms responsible are incompletely understood. In this study we elucidate a functional pathway in mouse brain that encodes the aversive effects of stress and mediates stress-induced reinstatement of cocaine place preference (CPP). Activation of the dynorphin/kappa opioid receptor (KOR) system by either repeated stress or agonist produces conditioned place aversion (CPA). Because KOR inhibition of dopamine release in the mesolimbic pathway has been proposed to mediate the dysphoria underlying this response, we tested dopamine-deficient mice in this study and found that KOR agonist in these mice still produced CPA. However, inactivation of serotonergic KORs by injection of the KOR antagonist norBNI into the dorsal raphe nucleus (DRN), blocked aversive responses to the KOR agonist U50,488 and blocked stress-induced reinstatement of CPP. KOR knockout (KO) mice did not develop CPA to U50,488; however, lentiviral re-expression of KOR in the DRN of KOR KO mice restored place aversion. In contrast, lentiviral expression in DRN of a mutated form of KOR that fails to activate p38 MAPK required for KOR-dependent aversion, did not restore place aversion. DRN serotonergic neurons project broadly throughout the brain, but the inactivation of KOR in the nucleus accumbens (NAc) coupled with viral re-expression in the DRN of KOR KO mice demonstrated that aversion was encoded by a DRN to NAc projection. These results suggest that the adverse effects of stress may converge on the serotonergic system and offers an approach to controlling stress-induced dysphoria and relapse.


Asunto(s)
Cocaína/metabolismo , Núcleos del Rafe/metabolismo , Receptores Opioides kappa/metabolismo , Estrés Fisiológico/fisiología , Área Tegmental Ventral/metabolismo , 3,4-Dicloro-N-metil-N-(2-(1-pirrolidinil)-ciclohexil)-bencenacetamida, (trans)-Isómero/farmacología , Análisis de Varianza , Animales , Ensayo de Inmunoadsorción Enzimática , Inmunohistoquímica , Lentivirus , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Naltrexona/análogos & derivados , Naltrexona/farmacología , Receptores Opioides kappa/agonistas , Receptores Opioides kappa/antagonistas & inhibidores , Receptores Opioides kappa/genética , Estrés Fisiológico/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA