Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Metallomics ; 11(10): 1657-1666, 2019 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-31380866

RESUMEN

Iron and copper are essential elements for practically all living organisms. Their metabolism is frequently interconnected, and while copper is relatively abundant in the ocean, iron is often a limiting factor for the growth of many marine microorganisms. In the present study, we aimed to elucidate the metabolisms of copper and iron and the connection of both in the marine picoalga Ostreococcus tauri. We show that O. tauri adjusts its copper economy in response to copper deficiency by downregulation of the expression of plastocyanin in favor of cytochrome c oxidase without significant changes in growth and physiology. Copper deprivation leads to increased expression of copper transporting ATPase and proteins involved in tetrapyrrole synthesis, most likely to ensure higher turnover of chlorophyll and/or heme. Elucidation of the effect of copper on the incorporation of iron into O. tauri proteins led us to identify the major iron uptake mediating protein, Ot-Fea1, whose expression and binding of iron is copper dependent. Based on our investigation of the incorporation of iron into Ot-Fea1 and ferritin, we hypothesize that O. tauri possesses another Fea1-independent iron uptake system.


Asunto(s)
Chlorophyta/metabolismo , ATPasas Transportadoras de Cobre/metabolismo , Cobre/metabolismo , Proteínas de Plantas/metabolismo , Plastocianina/metabolismo , Transferrina/metabolismo , Cloroplastos/metabolismo , Hierro/metabolismo
2.
J Biol Chem ; 294(23): 9147-9160, 2019 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-31028174

RESUMEN

ZIP14 (encoded by the solute carrier 39 family member 14 (SLC39A14) gene) is a manganese transporter that is abundantly expressed in the liver and small intestine. Loss-of-function mutations in SLC39A14 cause severe hypermanganesemia. Because the liver is regarded as the main regulatory organ involved in manganese homeostasis, impaired hepatic manganese uptake for subsequent biliary excretion has been proposed as the underlying disease mechanism. However, liver-specific Zip14 KO mice exhibit decreased manganese only in the liver and do not develop manganese accumulation in other tissues under normal conditions. This suggests that impaired hepatobiliary excretion is not the primary cause for manganese overload observed in individuals lacking functional ZIP14. We therefore hypothesized that increased intestinal manganese absorption could induce manganese hyperaccumulation when ZIP14 is inactivated. To elucidate the role of ZIP14 in manganese absorption, here we used CaCo-2 Transwell cultures as a model system for intestinal epithelia. The generation of a ZIP14-deficient CaCo-2 cell line enabled the identification of ZIP14 as the major transporter mediating basolateral manganese uptake in enterocytes. Lack of ZIP14 severely impaired basolateral-to-apical (secretory) manganese transport and strongly enhanced manganese transport in the apical-to-basolateral (absorptive) direction. Mechanistic studies provided evidence that ZIP14 restricts manganese transport in the absorptive direction via direct basolateral reuptake of freshly absorbed manganese. In support of such function of intestinal ZIP14 in vivo, manganese levels in the livers and brains of intestine-specific Zip14 KO mice were significantly elevated. Our findings highlight the importance of intestinal ZIP14 in regulating systemic manganese homeostasis.


Asunto(s)
Proteínas de Transporte de Catión/metabolismo , Mucosa Intestinal/metabolismo , Manganeso/metabolismo , Animales , Transporte Biológico , Células CACO-2 , Proteínas de Transporte de Catión/genética , Membrana Celular/metabolismo , Técnicas de Inactivación de Genes , Humanos , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
3.
Adv Neurobiol ; 18: 313-343, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28889275

RESUMEN

Copper is an essential trace metal that is required for several important biological processes, however, an excess of copper can be toxic to cells. Therefore, systemic and cellular copper homeostasis is tightly regulated, but dysregulation of copper homeostasis may occur in disease states, resulting either in copper deficiency or copper overload and toxicity. This chapter will give an overview on the biological roles of copper and of the mechanisms involved in copper uptake, storage, and distribution. In addition, we will describe potential mechanisms of the cellular toxicity of copper and copper oxide nanoparticles. Finally, we will summarize the current knowledge on the connection of copper toxicity with neurodegenerative diseases.


Asunto(s)
Encéfalo/metabolismo , Cobre/metabolismo , Intoxicación del Sistema Nervioso por Metales Pesados/metabolismo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/fisiopatología , Trastorno del Espectro Autista/metabolismo , Trastorno del Espectro Autista/fisiopatología , Cobre/envenenamiento , Intoxicación del Sistema Nervioso por Metales Pesados/etiología , Intoxicación del Sistema Nervioso por Metales Pesados/fisiopatología , Degeneración Hepatolenticular/metabolismo , Degeneración Hepatolenticular/fisiopatología , Humanos , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/fisiopatología , Nanopartículas del Metal , Estrés Oxidativo , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/fisiopatología
4.
Handb Clin Neurol ; 142: 43-55, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28433109

RESUMEN

Wilson disease is an autosomal-recessive disorder originating from a genetic defect in the copper-transporting ATPase ATP7B that is required for biliary copper secretion and loading of ceruloplasmin with copper. Impaired ATP7B function in Wilson disease results in excessive accumulation of copper in liver, brain, and other tissues. Toxic copper deposits may induce oxidative stress, modify expression of genes, directly inhibit proteins, and impair mitochondrial function, leading to hepatic, neuropsychiatric, renal, musculoskeletal, and other symptoms. Hepatocyte dysfunction initially manifests as steatosis and later may progress to other hepatic phenotypes such as acute liver failure, hepatitis, and fibrosis. In the brain, copper accumulates in astrocytes, leading to impairment of the blood-brain barrier and consequent damage to neurons and oligodendrocytes. Basal ganglia and brainstem are the brain regions with highest susceptibility to copper toxicity and their lesions lead to various combinations of movement and psychiatric disorders. This chapter will give an overview of the essential requirement of copper for biologic processes and the molecular mechanisms employed by cells to maintain their copper levels in a proper range. We will specify the physiologic functions of ATP7B and the consequences of its dysfunction and summarize the current knowledge on the pathogenesis of liver and neuropsychiatric disease. Finally, we will describe the consequences of copper overload in Wilson disease in other tissues.


Asunto(s)
ATPasas Transportadoras de Cobre/fisiología , Cobre/metabolismo , Degeneración Hepatolenticular/etiología , Barrera Hematoencefálica , Encéfalo/metabolismo , ATPasas Transportadoras de Cobre/genética , Degeneración Hepatolenticular/genética , Degeneración Hepatolenticular/metabolismo , Humanos , Trastornos Mentales/etiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA