Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Water Res ; 232: 119707, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36773351

RESUMEN

Microplastics (MPs) are one of the most widespread contaminants worldwide, yet their risks for freshwater ecosystems have seldom been investigated. In this study, we performed a large monitoring campaign to assess the presence and risks of MPs in Amazonian freshwater ecosystems. We investigated MP pollution in 40 samples collected along 1500 km in the Brazilian Amazon, including the Amazon River, three major tributaries, and several streams next to the most important urban areas. MPs in the 55-5000 µm size range were characterized (size, shape, color) by microscopy and identified (polymer composition) by infrared spectroscopy. Ecotoxicological risks were assessed using chronic Species Sensitivity Distributions for effects triggered by food dilution and tissue translocation using data alignment methods that correct for polydispersity of environmental MPs and bioaccessibility. This study shows that MPs are ubiquitous contaminants in Amazonian freshwater ecosystems, with measured concentrations (55-5000 µm) ranging between 5 and 152 MPs/m3 in the Amazon River and its main tributaries, and between 23 and 74,550 MPs/m3 in urban streams. The calculated Hazardous Concentration for the 5% of species (HC5) derived from the SSDs for the entire MP range (1-5000 µm) were 1.6 × 107 MPs/m3 (95% CI: 1.2 × 106 - 4.0 × 108) for food dilution, and 1.8 × 107 MPs/m3 (95% CI: 1.5 × 106 - 4.3 × 108) for translocation. Rescaled exposure concentrations (1-5000 µm) in the Amazon River and tributaries ranged between 6.0 × 103 and 1.8 × 105 MPs/m3, and were significantly lower than the calculated HC5 values. Rescaled concentrations in urban streams ranged between 1.7 × 105 and 5.7 × 108 MPs/m3, and exceeded both calculated HC5 values in 20% of the locations. This study shows that ecological impacts by MP contamination are not likely to happen in the Amazon River and its major tributaries. However, risks for freshwater organisms may be expected in near densely populated areas, such as the cities of Manaus or Belem, which have limited wastewater treatment facilities.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Plásticos , Ríos/química , Ecosistema , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/análisis , Medición de Riesgo
2.
J Hazard Mater ; 443(Pt B): 130271, 2023 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-36351347

RESUMEN

The plastisphere has been widely studied in the oceans; however, there is little information on how living organisms interact with the plastisphere in freshwater ecosystems, and particularly on how this interaction changes over time. We have characterized, over one year, the evolution of the eukaryotic and bacterial communities colonizing four everyday plastic items deployed in two sites of the same river with different anthropogenic impact. α-diversity analyses showed that site had a significant role in bacterial and eukaryotic diversity, with the most impacted site having higher values of the Shannon diversity index. ß-diversity analyses showed that site explained most of the sample variation followed by substrate type (i.e., plastic item) and time since first colonization. In this regard, core microbiomes/biomes in each plastic at 1, 3, 6 and 12 months could be identified at genus level, giving a global overview of the evolution of the plastisphere over time. The measured concentration of antibiotics in the river water positively correlated with the abundance of antibiotic resistance genes (ARGs) on the plastics. These results provide relevant information on the temporal dynamics of the plastisphere in freshwater ecosystems and emphasize the potential contribution of plastic items to the global spread of antibiotic resistance.


Asunto(s)
Microbiota , Plásticos , Plásticos/análisis , Antibacterianos/farmacología , Ríos , Farmacorresistencia Microbiana/genética , Microbiota/genética , Biopelículas , Genes Bacterianos
3.
Environ Pollut ; 306: 119473, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35580714

RESUMEN

Microplastics (MPs) have been shown to act as sorbent phases and thus carriers of organic chemicals in the aquatic environment. Therefore, concerns exist that MP ingestion increases the uptake and accumulation of organic chemicals by aquatic organisms. However, it is unclear if this pathway is relevant compared to other exposure pathways. Here we compared the bioconcentration capacity of two hydrophobic organic chemicals (i.e., chlorpyrifos and hexachlorobenzene) in a freshwater fish (Danio rerio) when exposed to chemicals through water only and in combination with contaminated polyethylene MPs. Additionally, a suite of biomarker analyses (acetylcholine esterase, glutathione S-transferase, alkaline phosphatase, catalase) was carried out to test whether MPs can enhance the toxic stress caused by chemicals. Two 14-day semi-static experiments (one for each chemical) were carried out with adult fish. Each experiment consisted of (1) a control treatment (no chemicals, no MPs); (2) a treatment in which fish were exposed to chlorpyrifos or hexachlorobenzene only through water; (3) a treatment in which fish were exposed to the chemicals through water and contaminated polyethylene MPs (100 mg MP/L). Two additional treatments were included for the biomarker analysis. These contained MPs at two different concentrations (5 and 100 mg MP/L) but no chemicals. The presence of contaminated MPs in contaminated water did not enhance but rather decreased the bioconcentration of both chemicals in fish compared to the treatment that contained contaminated water in absence of MPs. This was more pronounced for hexachlorobenzene, which is more hydrophobic than chlorpyrifos. Enzyme activity levels in fish were only significantly altered in the presence of MPs for alkaline phosphatase. This study indicates that MP presence in freshwater ecosystems is not expected to increase the risks associated with chemical bioconcentration in aquatic organisms and that other exposure pathways (i.e., uptake via respiration, skin permeability) may be of higher importance.


Asunto(s)
Cloropirifos , Contaminantes Químicos del Agua , Fosfatasa Alcalina/metabolismo , Animales , Organismos Acuáticos/metabolismo , Bioacumulación , Biomarcadores/metabolismo , Cloropirifos/metabolismo , Cloropirifos/toxicidad , Ecosistema , Hexaclorobenceno/análisis , Microplásticos , Plásticos/toxicidad , Polietileno/toxicidad , Agua/metabolismo , Contaminantes Químicos del Agua/análisis , Pez Cebra/metabolismo
4.
Environ Toxicol Chem ; 41(6): 1555-1567, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35353397

RESUMEN

Microplastic ingestion has been shown for various organisms, but knowledge of the potential adverse effects on freshwater invertebrates remains limited. We assessed the ingestion capacity and the associated effects of polyester fibers (26-5761 µm) and car tire particles (25-75 µm) on freshwater invertebrates under acute and chronic exposure conditions. A range of microplastic concentrations was tested on Daphnia magna, Hyalella azteca, Asellus aquaticus, and Lumbriculus variegatus using water only (up to 0.15 g/L) or spiked sediment (up to 2 g/kg dry wt), depending on the habitat of the species. Daphnia magna did not ingest any fibers, but low levels of fibers were ingested by all tested benthic invertebrate species. Car tire particle ingestion rose with increasing exposure concentration for all tested invertebrates and was highest in D. magna and L. variegatus. In most cases, no statistically significant effects on mobility, survival, or reproductive output were observed after acute and chronic exposure at the tested concentrations. However, fibers affected the reproduction and survival of D. magna (no-observed-effect concentration [NOEC]: 0.15 mg/L) due to entanglement and limited mobility under chronic conditions. Car tire particles affected the reproduction (NOEC: 1.5 mg/L) and survival (NOEC: 0.15 mg/L) of D. magna after chronic exposure at concentrations in the same order of magnitude as modeled river water concentrations, suggesting that refined exposure and effect studies should be performed with these microplastics. Our results confirm that microplastic ingestion by freshwater invertebrates depends on particle shape and size and that ingestion quantity depends on the exposure pathway and the feeding strategy of the test organism. Environ Toxicol Chem 2022;41:1555-1567. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Asunto(s)
Oligoquetos , Contaminantes Químicos del Agua , Animales , Automóviles , Daphnia , Agua Dulce , Invertebrados , Microplásticos , Plásticos , Poliésteres/toxicidad , Agua , Contaminantes Químicos del Agua/análisis
5.
Environ Pollut ; 293: 118520, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34800590

RESUMEN

Sewage sludge used as agricultural fertilizer has been identified as an important source of microplastics (MPs) to the environment. However, the fate of MPs added to agricultural soils is largely unknown. This study investigated the fate of MPs in agricultural soils amended with sewage sludge and the role of surface water runoff as a mechanism driving their transfer to aquatic ecosystems. This was assessed using three experimental plots located in a semi-arid area of Central Spain, which were planted with barley. The experimental plots received the following treatments: (1) control or no sludge application; (2) historical sludge application, five years prior to the experiment; and (3) sludge application at the beginning of the experiment. MPs were analyzed in surface water runoff and in different soil layers to investigate transport and infiltration for one year. The sewage sludge used in our experiment contained 5972-7771 MPs/kg dw. Based on this, we estimated that about 16,000 MPs were added to the agricultural plot amended with sludge. As expected, the sludge application significantly increased the MP concentration in soils. The control plot contained low MP concentrations (31-120 MPs kg-1 dw), potentially originating from atmospheric deposition. The plot treated five years prior to the experiment contained 226-412 and 177-235 MPs kg-1 dw at the start and end of the experiment, respectively; while the recently treated plot contained 182-231 and 138-288 MPs kg-1 dw. Our study shows that MP concentrations remain relatively constant in agricultural soils and that the MP infiltration capacity is very low. Surface water runoff had a negligible influence on the export of MPs from agricultural soils, mobilizing only 0.2-0.4% of the MPs added with sludge. We conclude that, in semi-arid regions, agricultural soils can be considered as long-term accumulators of MPs.


Asunto(s)
Microplásticos , Contaminantes del Suelo , Ecosistema , Monitoreo del Ambiente , Plásticos , Aguas del Alcantarillado , Suelo , Contaminantes del Suelo/análisis , Agua
6.
J Hazard Mater ; 420: 126481, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34252669

RESUMEN

Microplastics (MPs) are considered to be ubiquitous contaminants in freshwater ecosystems, yet their sources and pathways at the river catchment scale need to be better determined. This study assessed MP (55-5000 µm) pollution in a Mediterranean river catchment (central Spain) and aimed to identify the importance of wastewater as an environmental pathway. We sampled treated and untreated wastewaters, and raw and digested sludge from five WWTPs during two seasons. River water and sediments were sampled at three locations with different anthropogenic influences during three seasons. On average, 93% (47-99%) of MPs were retained by WWTPs. Concentrations in river water and sediment ranged between 1 and 227 MPs/m3 and 0-2630 MPs/kg dw, respectively. Concentrations strongly depended upon land-use, with pollution levels increasing significantly downstream of urban and industrial areas. Seasonality influenced the observed MP concentrations strongly. During high flow periods, higher water but lower sediment concentrations were observed compared to low flow periods. We estimate that 1 × 1010 MPs are discharged into the catchment via treated and untreated wastewater annually, which constitutes up to 50% of the total MP catchment discharge. Thus, we conclude that the wastewater system represents a major environmental pathway for MPs into Mediterranean rivers with low dilution capacity.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Ecosistema , Monitoreo del Ambiente , Plásticos , Aguas Residuales , Contaminantes Químicos del Agua/análisis
7.
Rev Environ Contam Toxicol ; 250: 1-43, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32025906

RESUMEN

Plastics and microplastics are nowadays ubiquitously found in the environment. This has raised concerns on possible adverse effects for human health and the environment. To date, extensive information exists on their occurrence in the marine environment. However, information on their different sources and their transport within and across different freshwater and terrestrial ecosystems is still limited. Therefore, we assessed the current knowledge regarding the industrial sources of plastics and microplastics, their environmental pathways and load rates and their occurrence and fate in different environmental compartments, thereby highlighting important data gaps which are needed to better describe their global environmental cycle and exposure. This study shows that the quantitative assessment of the contribution of the different major sources of plastics, microplastics and nanoplastics to aquatic and terrestrial ecosystems is challenged by some data limitations. While the presence of microplastics in wastewater and freshwater is relatively well studied, data on sediments and especially soil ecosystems are too limited. Moreover, the overall occurrence of large-sized plastics, the patterns of microplastic and nanoplastic formation from them, the presence and deposition of plastic particles from the atmosphere and the fluxes of all kinds of plastics from soils towards aquatic environments (e.g. by surface water runoff, soil infiltration) are still poorly understood. Finally, this study discusses several research areas that need urgent development in order to better understand the potential ecological risks of plastic pollution and provides some recommendations to better manage and control plastic and microplastic inputs into the environment.


Asunto(s)
Agua Dulce , Microplásticos , Plásticos/toxicidad , Contaminantes Químicos del Agua , Ecosistema , Monitoreo del Ambiente , Humanos , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
8.
Aquat Toxicol ; 212: 47-53, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31071656

RESUMEN

The increasing production of engineered inorganic nanoparticles (EINPs) elevates their release into aquatic ecosystems raising concerns about associated environmental risks. Numerous investigations indicate sediments as the final sink, facilitating the exposure of benthic species to EINPs. Although reports of sub-lethal EINP effects on benthic species are increasing, the importance of exposure pathways (either waterborne or dietary) is poorly understood. This study investigates the influence of two EINPs, namely titanium dioxide (nTiO2) and silver (nAg), on the benthic model organism Gammarus fossarum specifically addressing the relative relevance of these pathways. For each type of EINP an individual 30-day long bioassay was conducted, applying a two-factorial test design. The factors include the presence or absence of the EINPs (nTiO2: ∼80 nm, 4 mg/L or nAg: ∼30 nm, 0.125 mg/L; n = 30) in the water phase (waterborne), combined with a preceding 6-day long aging of their diet (black alder leaves) also in presence or absence of the EINPs (dietary). Response variables were mortality, food consumption, feces production and energy assimilation. Additionally, the physiological fitness was examined using lipid content and dry weight of the organisms as measures. Results revealed a significantly reduced energy assimilation (up to ∼30%) in G. fossarum induced by waterborne exposure towards nTiO2. In contrast, the dietary exposure towards nAg significantly increased the organisms' energy assimilation (up to ∼50%). Hence, exposure pathway dependent effects of EINPs cannot be generalized and remain particle specific resting upon their intrinsic properties affecting their potential to interact with the surrounding environment. As a result of the different properties of the EINPs used in this study, we clearly demonstrated variations in type and direction of observed effects in G. fossarum. The results of the present study are thus supporting current approaches for nano-specific grouping that might enable an enhanced accuracy in predicting EINP effects facilitating their environmental risk assessment.


Asunto(s)
Anfípodos/efectos de los fármacos , Exposición a Riesgos Ambientales , Nanopartículas del Metal/toxicidad , Plata/toxicidad , Titanio/toxicidad , Animales , Biomasa , Metabolismo Energético/efectos de los fármacos , Heces , Conducta Alimentaria/efectos de los fármacos , Lípidos/análisis , Tamaño de la Partícula , Hojas de la Planta/metabolismo , Contaminantes Químicos del Agua/toxicidad
9.
Sci Total Environ ; 644: 342-349, 2018 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-29981982

RESUMEN

The environmental risk assessment of pesticides is mainly performed on individual active ingredients. In surface waters within the agricultural landscape, however, contamination is usually characterized by complex pesticide mixtures. To estimate the joint effects caused by these complex mixtures, mathematical models have been proposed. Among these, the model of concentration addition (CA) is suggested as default model for the risk assessment of chemical mixtures as it is considered protective for mixtures composed of similar and dissimilar acting substances. Here we assessed the suitability of CA predictions for seven field relevant pesticide mixtures using acute (immobility) and chronic (reproduction) responses of the standard test species Daphnia magna. Pesticide mixtures indicated largely additive or less than additive effects when using CA model predictions as a reference. Moreover, we revealed that deviations from CA predictions are lower for chronic (up to 3.2-fold) relative to acute (up to 7.2-fold) response variables. Additionally, CA predictions were in general more accurate for complex mixtures relative to those composed of only a few pesticides. Thus, this study suggests CA models as largely protective for the risk assessment of pesticide mixtures justifying its use as default model. At the same time, extrapolating conclusions about the joint effects of pesticides from acute to chronic responses is uncertain, due to partly large discrepancies with regards to the deviation of model prediction and observed effects between exposure scenarios.


Asunto(s)
Daphnia/fisiología , Plaguicidas/toxicidad , Agricultura , Animales , Mezclas Complejas , Plaguicidas/normas , Medición de Riesgo , Contaminantes Químicos del Agua
10.
Environ Pollut ; 241: 549-556, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29883956

RESUMEN

Waterborne exposure towards fungicides is known to trigger negative effects in aquatic leaf-associated microbial decomposers and leaf-shredding macroinvertebrates. We expected similar effects when these organisms use leaf material from terrestrial plants that were treated with systemic fungicides as a food source since the fungicides may remain within the leaves when entering aquatic systems. To test this hypothesis, we treated black alder (Alnus glutinosa) trees with a tap water control or a systemic fungicide mixture (azoxystrobin, cyprodinil, quinoxyfen, and tebuconazole) at two worst-case application rates. Leaves of these trees were used in an experiment targeting alterations in two functions provided by leaf-associated microorganisms, namely the decomposition and conditioning of leaf material. The latter was addressed via the food-choice response of the amphipod shredder Gammarus fossarum. During a second experiment, the potential impact of long-term consumption of leaves from trees treated with systemic fungicides on G. fossarum was assessed. Systemic fungicide treatment altered the resource quality of the leaf material resulting in trends of increased fungal spore production and an altered community composition of leaf-associated fungi. These changes in turn caused a significant preference of Gammarus for microbially conditioned leaves that had received the highest fungicide treatment over control leaves. This higher food quality ultimately resulted in a higher gammarid growth (up to 300% increase) during the long-term feeding assay. Although the underlying mechanisms still need to be addressed, the present study demonstrates a positive indirect response in aquatic organisms due to systemic pesticide application in a terrestrial system. As the effects from the introduction of plant material treated with systemic fungicides strongly differ from those mediated via other pathways (e.g., waterborne exposure), our study provides a novel perspective of fungicide-triggered effects in aquatic detritus-based food webs.


Asunto(s)
Alnus/efectos de los fármacos , Anfípodos/crecimiento & desarrollo , Hongos/efectos de los fármacos , Fungicidas Industriales/farmacología , Hojas de la Planta/toxicidad , Animales , Organismos Acuáticos/crecimiento & desarrollo , Preferencias Alimentarias/efectos de los fármacos , Árboles/efectos de los fármacos , Contaminantes Químicos del Agua/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA