Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
PLoS One ; 15(5): e0233779, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32470059

RESUMEN

Trehalose metabolism in yeast has been linked to a variety of phenotypes, including heat resistance, desiccation tolerance, carbon-source utilization, and sporulation. The relationships among the several phenotypes of mutants unable to synthesize trehalose are not understood, even though the pathway is highly conserved. One of these phenotypes is that tps1Δ strains cannot reportedly grow on media containing glucose or fructose, even when another carbon source they can use (e.g. galactose) is present. Here we corroborate the recent observation that a small fraction of yeast tps1Δ cells do grow on glucose, unlike the majority of the population. This is not due to a genetic alteration, but instead resembles the persister phenotype documented in many microorganisms and cancer cells undergoing lethal stress. We extend these observations to show that this phenomenon is glucose-specific, as it does not occur on another highly fermented carbon source, fructose. We further demonstrate that this phenomenon appears to be related to mitochondrial complex III function, but unrelated to inorganic phosphate levels in the cell, as had previously been suggested. Finally, we found that this phenomenon is specific to S288C-derived strains, and is the consequence of a variant in the MKT1 gene.


Asunto(s)
Glucosa/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Complejo III de Transporte de Electrones/metabolismo , Fermentación , Fructosa/metabolismo , Glucosiltransferasas/genética , Mutación con Pérdida de Función , Trehalosa/biosíntesis
2.
Cell ; 173(3): 749-761.e38, 2018 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-29606352

RESUMEN

Coexpression of proteins in response to pathway-inducing signals is the founding paradigm of gene regulation. However, it remains unexplored whether the relative abundance of co-regulated proteins requires precise tuning. Here, we present large-scale analyses of protein stoichiometry and corresponding regulatory strategies for 21 pathways and 67-224 operons in divergent bacteria separated by 0.6-2 billion years. Using end-enriched RNA-sequencing (Rend-seq) with single-nucleotide resolution, we found that many bacterial gene clusters encoding conserved pathways have undergone massive divergence in transcript abundance and architectures via remodeling of internal promoters and terminators. Remarkably, these evolutionary changes are compensated post-transcriptionally to maintain preferred stoichiometry of protein synthesis rates. Even more strikingly, in eukaryotic budding yeast, functionally analogous proteins that arose independently from bacterial counterparts also evolved to convergent in-pathway expression. The broad requirement for exact protein stoichiometries despite regulatory divergence provides an unexpected principle for building biological pathways both in nature and for synthetic activities.


Asunto(s)
Enzimas/química , Escherichia coli/enzimología , Evolución Molecular , Isoformas de Proteínas/química , Bacillus subtilis/enzimología , Bacillus subtilis/genética , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Humanos , Familia de Multigenes , Operón , Filogenia , Regiones Promotoras Genéticas , ARN Mensajero/metabolismo , Ribosomas/química , Análisis de Secuencia de ARN , Transcriptoma
3.
Mol Biol Cell ; 29(8): 897-910, 2018 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-29444955

RESUMEN

Metabolic dysregulation leading to sugar-phosphate accumulation is toxic in organisms ranging from bacteria to humans. By comparing two models of sugar-phosphate toxicity in Saccharomyces cerevisiae, we demonstrate that toxicity occurs, at least in part, through multiple, isomer-specific mechanisms, rather than a single general mechanism.


Asunto(s)
Fructosafosfatos/toxicidad , Galactosafosfatos/toxicidad , Genes Supresores , Saccharomyces cerevisiae/metabolismo , Medios de Cultivo/química , Fructosafosfatos/metabolismo , Galactosafosfatos/metabolismo , Regulación Fúngica de la Expresión Génica , Genes Fúngicos , Mutación , Saccharomyces cerevisiae/genética
4.
Cell Host Microbe ; 21(6): 731-741.e10, 2017 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-28618269

RESUMEN

Obligate intracellular parasites must efficiently invade host cells in order to mature and be transmitted. For the malaria parasite Plasmodium falciparum, invasion of host red blood cells (RBCs) is essential. Here we describe a parasite-specific transcription factor PfAP2-I, belonging to the Apicomplexan AP2 (ApiAP2) family, that is responsible for regulating the expression of genes involved in RBC invasion. Our genome-wide analysis by ChIP-seq shows that PfAP2-I interacts with a specific DNA motif in the promoters of target genes. Although PfAP2-I contains three AP2 DNA-binding domains, only one is required for binding of the target genes during blood stage development. Furthermore, we find that PfAP2-I associates with several chromatin-associated proteins, including the Plasmodium bromodomain protein PfBDP1 and that complex formation is associated with transcriptional regulation. As a key regulator of red blood cell invasion, PfAP2-I represents a potential new antimalarial therapeutic target.


Asunto(s)
Eritrocitos/parasitología , Malaria/parasitología , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Factor de Transcripción AP-2/genética , Factor de Transcripción AP-2/metabolismo , Antígenos de Protozoos , Secuencia de Bases , Cromatina/genética , Cromatina/metabolismo , ADN Protozoario/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica , Genes Protozoarios , Histonas/genética , Histonas/metabolismo , Interacciones Huésped-Parásitos , Motivos de Nucleótidos/genética , Plasmodium , Plasmodium falciparum/genética , Plasmodium falciparum/patogenicidad , Regiones Promotoras Genéticas , Proteínas Recombinantes , Elementos Reguladores de la Transcripción
5.
Proc Natl Acad Sci U S A ; 112(19): 6116-21, 2015 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-25918382

RESUMEN

Trehalose is a highly stable, nonreducing disaccharide of glucose. A large body of research exists implicating trehalose in a variety of cellular phenomena, notably response to stresses of various kinds. However, in very few cases has the role of trehalose been examined directly in vivo. Here, we describe the development and characterization of a system in Saccharomyces cerevisiae that allows us to manipulate intracellular trehalose concentrations independently of the biosynthetic enzymes and independently of any applied stress. We found that many physiological roles heretofore ascribed to intracellular trehalose, including heat resistance, are not due to the presence of trehalose per se. We also found that many of the metabolic and growth defects associated with mutations in the trehalose biosynthesis pathway are not abolished by providing abundant intracellular trehalose. Instead, we made the observation that intracellular accumulation of trehalose or maltose (another disaccharide of glucose) is growth-inhibitory in a carbon source-specific manner. We conclude that the physiological role of the trehalose pathway is fundamentally metabolic: i.e., more complex than simply the consequence of increased concentrations of the sugar and its attendant physical properties (with the exception of the companion paper where Tapia et al. [Tapia H, et al. (2015) Proc Natl Acad Sci USA, 10.1073/pnas.1506415112] demonstrate a direct role for trehalose in protecting cells against desiccation).


Asunto(s)
Proteínas de Transporte de Monosacáridos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Simportadores/metabolismo , Trehalosa/metabolismo , Transporte Biológico , Carbono/metabolismo , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Glucosa/metabolismo , Calor , Maltosa/metabolismo , Metabolómica
6.
Nucleic Acids Res ; 42(13): 8271-84, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24957599

RESUMEN

We provide the first comprehensive analysis of any transcription factor family in Cryptosporidium, a basal-branching apicomplexan that is the second leading cause of infant diarrhea globally. AP2 domain-containing proteins have evolved to be the major regulatory family in the phylum to the exclusion of canonical regulators. We show that apicomplexan and perkinsid AP2 domains cluster distinctly from other chromalveolate AP2s. Protein-binding specificity assays of C. parvum AP2 domains combined with motif conservation upstream of co-regulated gene clusters allowed the construction of putative AP2 regulons across the in vitro life cycle. Orthologous Apicomplexan AP2 (ApiAP2) expression has been rearranged relative to the malaria parasite P. falciparum, suggesting ApiAP2 network rewiring during evolution. C. hominis orthologs of putative C. parvum ApiAP2 proteins and target genes show greater than average variation. C. parvum AP2 domains display reduced binding diversity relative to P. falciparum, with multiple domains binding the 5'-TGCAT-3', 5'-CACACA-3' and G-box motifs (5'-G[T/C]GGGG-3'). Many overrepresented motifs in C. parvum upstream regions are not AP2 binding motifs. We propose that C. parvum is less reliant on ApiAP2 regulators in part because it utilizes E2F/DP1 transcription factors. C. parvum may provide clues to the ancestral state of apicomplexan transcriptional regulation, pre-AP2 domination.


Asunto(s)
Cryptosporidium parvum/genética , Familia de Multigenes , Factores de Transcripción/clasificación , Factores de Transcripción/metabolismo , Alveolados/genética , Apicomplexa/genética , Sitios de Unión , Cryptosporidium parvum/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/clasificación , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Evolución Molecular , Redes Reguladoras de Genes , Motivos de Nucleótidos , Filogenia , Plasmodium falciparum/genética , Estructura Terciaria de Proteína , Factores de Transcripción/química , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA