Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Nat Commun ; 13(1): 2302, 2022 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-35484160

RESUMEN

Pathways that direct the selection of the telomerase-dependent or recombination-based, alternative lengthening of telomere (ALT) maintenance pathway in cancer cells are poorly understood. Using human lung cancer cells and tumor organoids we show that formation of the 2,2,7-trimethylguanosine (TMG) cap structure at the human telomerase RNA 5' end by the Trimethylguanosine Synthase 1 (TGS1) is central for recruiting telomerase to telomeres and engaging Cajal bodies in telomere maintenance. TGS1 depletion or inhibition by the natural nucleoside sinefungin impairs telomerase recruitment to telomeres leading to Exonuclease 1 mediated generation of telomere 3' end protrusions that engage in RAD51-dependent, homology directed recombination and the activation of key features of the ALT pathway. This indicates a critical role for 2,2,7-TMG capping of the RNA component of human telomerase (hTR) in enforcing telomerase-dependent telomere maintenance to restrict the formation of telomeric substrates conductive to ALT. Our work introduces a targetable pathway of telomere maintenance that holds relevance for telomere-related diseases such as cancer and aging.


Asunto(s)
Telomerasa , Guanosina , Humanos , ARN/genética , Telomerasa/genética , Telomerasa/metabolismo , Telómero/genética , Telómero/metabolismo
2.
Nat Commun ; 10(1): 1001, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30824709

RESUMEN

In vertebrates, the telomere repeat containing long, non-coding RNA TERRA is prone to form RNA:DNA hybrids at telomeres. This results in the formation of R-loop structures, replication stress and telomere instability, but also contributes to alternative lengthening of telomeres (ALT). Here, we identify the TERRA binding proteins NONO and SFPQ as novel regulators of RNA:DNA hybrid related telomere instability. NONO and SFPQ locate at telomeres and have a common role in suppressing RNA:DNA hybrids and replication defects at telomeres. NONO and SFPQ act as heterodimers to suppress fragility and homologous recombination at telomeres, respectively. Combining increased telomere fragility with unleashing telomere recombination upon NONO/SFPQ loss of function causes massive recombination events, involving 35% of telomeres in ALT cells. Our data identify the RNA binding proteins SFPQ and NONO as novel regulators at telomeres that collaborate to ensure telomere integrity by suppressing telomere fragility and homologous recombination triggered by RNA:DNA hybrids.


Asunto(s)
ADN/metabolismo , Proteínas Asociadas a Matriz Nuclear/metabolismo , Hibridación de Ácido Nucleico , Factores de Transcripción de Octámeros/metabolismo , Factor de Empalme Asociado a PTB/metabolismo , Proteínas de Unión al ARN/metabolismo , ARN/metabolismo , Telómero/metabolismo , Animales , Línea Celular Tumoral , Replicación del ADN , Proteínas de Unión al ADN , Recombinación Homóloga , Humanos , Ratones , ARN no Traducido , Homeostasis del Telómero , Proteínas de Unión a Telómeros/metabolismo
3.
Comp Cytogenet ; 12(1): 27-40, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29416829

RESUMEN

We explored the topology of 18S and 28S rDNA units by fluorescence in situ hybridization (FISH) in the karyotypes of thirteen species representatives from major groups of Primates and Tupaia minor (Günther, 1876) (Scandentia), in order to expand our knowledge of Primate genome reshuffling and to identify the possible dispersion mechanisms of rDNA sequences. We documented that rDNA probe signals were identified on one to six pairs of chromosomes, both acrocentric and metacentric ones. In addition, we examined the potential homology of chromosomes bearing rDNA genes across different species and in a wide phylogenetic perspective, based on the DAPI-inverted pattern and their synteny to human. Our analysis revealed an extensive variability in the topology of the rDNA signals across studied species. In some cases, closely related species show signals on homologous chromosomes, thus representing synapomorphies, while in other cases, signal was detected on distinct chromosomes, leading to species specific patterns. These results led us to support the hypothesis that different mechanisms are responsible for the distribution of the ribosomal DNA cluster in Primates.

4.
Sci Rep ; 7(1): 4711, 2017 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-28680152

RESUMEN

The goal of this study was to understand if exosomes derived from high-metastatic cells may influence the behavior of less aggressive cancer cells and the properties of the endothelium. We found that metastatic colon cancer cells are able to transfer their amoeboid phenotype to isogenic primary cancer cells through exosomes, and that this morphological transition is associated with the acquisition of a more aggressive behavior. Moreover, exosomes from the metastatic line (SW620Exos) exhibited higher ability to cause endothelial hyperpermeability than exosomes from the non metastatic line (SW480Exos). SWATH-based quantitative proteomic analysis highlighted that SW620Exos are significantly enriched in cytoskeletal-associated proteins including proteins activating the RhoA/ROCK pathway, known to induce amoeboid properties and destabilization of endothelial junctions. In particular, thrombin was identified as a key mediator of the effects induced by SW620Exos in target cells, in which we also found a significant increase of RhoA activity. Overall, our results demonstrate that in a heterogeneous context exosomes released by aggressive sub-clones can contribute to accelerate tumor progression by spreading malignant properties that affect both the tumor cell plasticity and the endothelial cell behavior.


Asunto(s)
Neoplasias del Colon/metabolismo , Neoplasias del Colon/secundario , Endotelio/metabolismo , Exosomas/metabolismo , Línea Celular Tumoral , Plasticidad de la Célula , Neoplasias del Colon/patología , Endotelio/patología , Exosomas/patología , Células Endoteliales de la Vena Umbilical Humana , Humanos , Permeabilidad , Fenotipo , Proteómica , Transducción de Señal , Trombina/metabolismo , Quinasas Asociadas a rho/metabolismo , Proteína de Unión al GTP rhoA/metabolismo
5.
Cytogenet Genome Res ; 151(3): 141-150, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28423373

RESUMEN

It has been hypothesized that interstitial telomeric sequences (ITSs), i.e., repeated telomeric DNA sequences found at intrachromosomal sites in many vertebrates, could be correlated to chromosomal rearrangements and plasticity. To test this hypothesis, we hybridized a telomeric PNA probe through FISH on representative species of 2 primate infraorders, Strepsirrhini (Lemur catta, Otolemur garnettii, Nycticebus coucang) and Catarrhini (Erythrocebus patas, Cercopithecus petaurista, Chlorocebus aethiops, Colobus guereza), as well as on 1 species of the order Scandentia, Tupaia minor, used as an outgroup for primates in phylogenetic reconstructions. In almost all primate species analyzed, we found a telomeric pattern only. In Tupaia, the hybridization revealed many bright ITSs on at least 11 chromosome pairs, both biarmed and acrocentric. These ITS signals in Tupaia correspond to fusion points of ancestral human syntenic associations, but are also present in other chromosomes showing synteny to only a single human chromosome. This distribution pattern was compared to that of the heterochromatin regions detected through sequential C-banding performed after FISH. Our results in the analyzed species, compared with literature data on ITSs in primates, allowed us to discuss different mechanisms responsible for the origin and distribution of ITSs, supporting the correlation between rearrangements and ITSs.


Asunto(s)
Primates/genética , Telómero/genética , Tupaiidae/genética , Animales , Heterocromatina , Ácidos Nucleicos de Péptidos/genética , Filogenia
6.
Biosci Rep ; 35(3)2015 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-26182375

RESUMEN

In our recent study was shown a significant recovery of damaged skeletal muscle of mice with X-linked muscular dystrophy (mdx) following low-intensity endurance exercise, probably by reducing the degeneration of dystrophic muscle. Consequently, in the present work, we aimed to identify proteins involved in the observed reduction in degenerating fibres. To this end, we used proteomic analysis to evaluate changes in the protein profile of quadriceps dystrophic muscles of exercised compared with sedentary mdx mice. Four protein spots were found to be significantly changed and were identified as three isoforms of carbonic anhydrase 3 (CA3) and superoxide dismutase [Cu-Zn] (SODC). Protein levels of CA3 isoforms were significantly up-regulated in quadriceps of sedentary mdx mice and were completely restored to wild-type (WT) mice values, both sedentary and exercised, in quadriceps of exercised mdx mice. Protein levels of SODC were down-regulated in quadriceps of sedentary mdx mice and were significantly restored to WT mice values, both sedentary and exercised, in quadriceps of exercised mdx mice. Western blot data were in agreement with those obtained using proteomic analysis and revealed the presence of one more CA3 isoform that was significantly changed. Based on data found in the present study, it seems that low-intensity endurance exercise may in part contribute to reduce cell degeneration process in mdx muscles, by counteracting oxidative stress.


Asunto(s)
Proteínas Musculares/metabolismo , Resistencia Física/fisiología , Músculo Cuádriceps/metabolismo , Músculo Cuádriceps/fisiopatología , Animales , Western Blotting , Anhidrasa Carbónica III/metabolismo , Electroforesis en Gel Bidimensional/métodos , Masculino , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Distrofia Muscular de Duchenne/fisiopatología , Proteómica/métodos , Reproducibilidad de los Resultados , Superóxido Dismutasa/metabolismo
7.
Oncotarget ; 6(15): 13772-89, 2015 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-25944696

RESUMEN

Bone disease is the most frequent complication in multiple myeloma (MM) resulting in osteolytic lesions, bone pain, hypercalcemia and renal failure. In MM bone disease the perfect balance between bone-resorbing osteoclasts (OCs) and bone-forming osteoblasts (OBs) activity is lost in favour of OCs, thus resulting in skeletal disorders. Since exosomes have been described for their functional role in cancer progression, we here investigate whether MM cell-derived exosomes may be involved in OCs differentiation. We show that MM cells produce exosomes which are actively internalized by Raw264.7 cell line, a cellular model of osteoclast formation. MM cell-derived exosomes positively modulate pre-osteoclast migration, through the increasing of CXCR4 expression and trigger a survival pathway. MM cell-derived exosomes play a significant pro-differentiative role in murine Raw264.7 cells and human primary osteoclasts, inducing the expression of osteoclast markers such as Cathepsin K (CTSK), Matrix Metalloproteinases 9 (MMP9) and Tartrate-resistant Acid Phosphatase (TRAP). Pre-osteoclast treated with MM cell-derived exosomes differentiate in multinuclear OCs able to excavate authentic resorption lacunae. Similar results were obtained with exosomes derived from MM patient's sera. Our data indicate that MM-exosomes modulate OCs function and differentiation. Further studies are needed to identify the OCs activating factors transported by MM cell-derived exosomes.


Asunto(s)
Exosomas/metabolismo , Mieloma Múltiple/metabolismo , Mieloma Múltiple/patología , Osteoclastos/metabolismo , Osteoclastos/patología , Animales , Diferenciación Celular/fisiología , Humanos , Ratones , Microscopía Confocal , Células RAW 264.7 , Transducción de Señal , Microambiente Tumoral
8.
Int J Med Mushrooms ; 16(1): 49-63, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24940904

RESUMEN

The aim of this study was to evaluate whether the cold-water extracts of Pleurotus eryngii var. ferulae (CWE-Pef) and Pleurotus nebrodensis (CWE-Pn), 2 of the most prized wild and cultivated edible mushrooms, can affect the tumor phenotype of human colon cancer HCT116 cells. Our results showed that treatment with CWE-Pef and CWE-Pn resulted in a significant inhibition of the viability of HCT116 cells and promoted apoptosis, as also demonstrated by the increase of Bax-to-Bcl-2 messenger RNA ratio. Moreover, we observed that both extracts were able to inhibit cell migration and to affect homotypic and heterotypic cell-cell adhesion. It also was found that treatment with CWE-Pef and CWE-Pn negatively modulated the phosphorylation of the protein tyrosine as well as the phosphorylation levels of extracellular signal-regulated kinase 1/2. In conclusion, the in vitro antitumor effects of CWE-Pef and CWE-Pn indicate that they can be considered as possible sources for new alternative therapeutic agents for cancer treatment.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Neoplasias del Colon/fisiopatología , Extractos Vegetales/farmacología , Pleurotus/química , Verduras/química , Antineoplásicos Fitogénicos/aislamiento & purificación , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/genética , Neoplasias del Colon/metabolismo , Humanos , Extractos Vegetales/aislamiento & purificación , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA