Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Front Physiol ; 15: 1264359, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39308980

RESUMEN

Introduction: Modern understanding of the concept of genetic diversity must include the study of both nuclear and organellar DNA, which differ greatly in terms of their structure, organization, gene content and distribution. This study comprises an analysis of the genetic diversity of the smut fungus Sporisorium reilianum f. sp. zeae from a mitochondrial perspective. Methods: Whole-genome sequencing data was generated from biological samples of S. reilianum collected from different geographical regions. Multiple sequence alignment and gene synteny analysis were performed to further characterize genetic diversity in the context of mitogenomic polymorphisms. Results: Mitochondria of strains collected in China contained unique sequences. The largest unique sequence stretch encompassed a portion of cox1, a mitochondrial gene encoding one of the subunits that make up complex IV of the mitochondrial electron transport chain. This unique sequence had high percent identity to the mitogenome of the related species Sporisorium scitamineum and Ustilago bromivora. Discussion: The results of this study hint at potential horizontal gene transfer or mitochondrial genome recombination events during the evolutionary history of basidiomycetes. Additionally, the distinct polymorphic region detected in the Chinese mitogenome provides the ideal foundation to develop a diagnostic method to discern between mitotypes and enhance knowledge on the genetic diversity of this organism.

2.
Plant Dis ; 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39320372

RESUMEN

Maize yield is threatened by increasing incidences of head smut disease caused by Sporisorium reilianum. To help breeders identify S. reilianum-resistant maize lines, the availability of efficient screening systems would be an advantage. Here we assessed maize lines with distinct levels of field resistance against head smut disease in greenhouse experiments using two different inoculation techniques. Addition of mixtures of mating-compatible sporidia to the soil at seedling stage of the plant did not lead to plant disease, and we could detect only marginal amounts of fungal DNA in apical meristems at eighteen days after sowing. Inoculation of the maize lines by leaf-whorl inoculation led to both high disease incidence and prominent levels of fungal DNA in apical meristems in all tested maize lines regardless of their field resistance levels. Thus, S. reilianum entering the plant via the leaf whorl can escape existing resistance mechanisms of currently known field-resistant maize lines. Since field-resistant lines are also resistant to inoculation via teliospore-contaminated soil, we propose teliospore addition to seeds at the time of sowing (rather than leaf-whorl inoculation of seedlings) combined with quantitative detection of fungal DNA in apical meristems, as an efficient screening procedure to discover field-resistant lines. However, screening maize plants for resistance against the leaf-whorl inoculation method might be promising for the discovery of novel resistance mechanisms needed to develop durably resistant maize lines.

3.
J Fungi (Basel) ; 10(2)2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38392829

RESUMEN

Rice production in the Anhui province is threatened by fungal diseases. We obtained twenty-five fungal isolates from rice and wild rice leaves showing leaf spot disease collected along the Yangtze River. A phylogenetic analysis based on internal transcribed spacer (ITS), translation elongation factor 1 alpha (TEF1-α), and beta tubulin (TUB2) sequences revealed one isolate (SS-2-JB-1B) grouped with Nigrospora sphaerica, one (QY) with Nigrospora chinensis, twenty-two with Nigrospora oryzae, and one isolate (QY-2) grouped in its own clade, which are related to but clearly different from N. oryzae. Nineteen tested isolates, including sixteen strains from the N. oryzae clade and the three isolates of the other three clades, caused disease on detached rice leaves. The three isolates that did not belong to N. oryzae were also able to cause disease in rice seedlings, suggesting that they were rice pathogens. Isolate QY-2 differed from the other isolates in terms of colony morphology, cell size, and susceptibility to fungicides, indicating that this isolate represents a new species that we named Nigrospora anhuiensis. Our analysis showed that N. sphaerica, N. chinensis, and the new species, N. anhuiensis, can cause rice leaf spot disease in the field. This research provides new knowledge for understanding rice leaf spot disease.

4.
Int J Mol Sci ; 24(21)2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37958588

RESUMEN

Host jumps are a major factor for the emergence of new fungal pathogens. In the evolution of smut fungi, a putative host jump occurred in Sporisorium reilianum that today exists in two host-adapted formae speciales, the sorghum-pathogenic S. reilianum f. sp. reilianum and maize-pathogenic S. reilianum f. sp. zeae. To understand the molecular host-specific adaptation to maize, we compared the transcriptomes of maize leaves colonized by both formae speciales. We found that both varieties induce many common defense response-associated genes, indicating that both are recognized by the plant as pathogens. S. reilianum f. sp. reilianum additionally induced genes involved in systemic acquired resistance. In contrast, only S. reilianum f. sp. zeae induced expression of chorismate mutases that function in reducing the level of precursors for generation of the defense compound salicylic acid (SA), as well as oxylipin biosynthesis enzymes necessary for generation of the SA antagonist jasmonic acid (JA). In accordance, we found reduced SA levels as well as elevated JA and JA-Ile levels in maize leaves inoculated with the maize-adapted variety. These findings support a model of the emergence of the maize-pathogenic variety from a sorghum-specific ancestor following a recent host jump.


Asunto(s)
Basidiomycota , Ustilaginales , Zea mays/genética , Ustilaginales/fisiología , Plantas , Enfermedades de las Plantas/microbiología
6.
Mol Plant Pathol ; 24(7): 725-741, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36715587

RESUMEN

Peroxisome-localized oxo-phytodienoic acid (OPDA) reductases (OPR) are enzymes converting 12-OPDA into jasmonic acid (JA). However, the biochemical and physiological functions of the cytoplasmic non-JA producing OPRs remain largely unknown. Here, we generated Mutator-insertional mutants of the maize OPR2 gene and tested its role in resistance to pathogens with distinct lifestyles. Functional analyses showed that the opr2 mutants were more susceptible to the (hemi)biotrophic pathogens Colletotrichum graminicola and Ustilago maydis, but were more resistant to the necrotrophic fungus Cochliobolus heterostrophus. Hormone profiling revealed that increased susceptibility to C. graminicola was associated with decreased salicylic acid (SA) but increased JA levels. Mutation of the JA-producing lipoxygenase 10 (LOX10) reversed this phenotype in the opr2 mutant background, corroborating the notion that JA promotes susceptibility to this pathogen. Exogenous SA did not rescue normal resistance levels in opr2 mutants, suggesting that this SA-inducible gene is the key downstream component of the SA-mediated defences against C. graminicola. Disease assays of the single and double opr2 and lox10 mutants and the JA-deficient opr7opr8 mutants showed that OPR2 negatively regulates JA biosynthesis, and that JA is required for resistance against C. heterostrophus. Overall, this study uncovers a novel function of a non-JA producing OPR as a major negative regulator of JA biosynthesis during pathogen infection, a function that leads to its contrasting contribution to either resistance or susceptibility depending on pathogen lifestyle.


Asunto(s)
Oxidorreductasas , Ácido Salicílico , Oxilipinas , Ciclopentanos , Regulación de la Expresión Génica de las Plantas
7.
Int J Mol Sci ; 23(16)2022 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-36012130

RESUMEN

The biotrophic fungus Sporisorium reilianum exists in two host-adapted formae speciales that cause head smut in maize (S. reilianum f. sp. zeae; SRZ) and sorghum (S. reilianum f. sp. reilianum; SRS). In sorghum, the spread of SRZ is limited to the leaves. To understand the plant responses to each forma specialis, we determined the transcriptome of sorghum leaves inoculated either with SRS or SRZ. Fungal inoculation led to gene expression rather than suppression in sorghum. SRZ induced a much greater number of genes than SRS. Each forma specialis induced a distinct set of plant genes. The SRZ-induced genes were involved in plant defense mainly at the plasma membrane and were associated with the Molecular Function Gene Ontology terms chitin binding, abscisic acid binding, protein phosphatase inhibitor activity, terpene synthase activity, chitinase activity, transmembrane transporter activity and signaling receptor activity. Specifically, we found an upregulation of the genes involved in phospholipid degradation and sphingolipid biosynthesis, suggesting that the lipid content of the plant plasma membrane may contribute to preventing the systemic spread of SRZ. In contrast, the colonization of sorghum with SRS increased the expression of the genes involved in the detoxification of cellular oxidants and in the unfolded protein response at the endoplasmic reticulum, as well as of the genes modifying the cuticle wax and lipid composition through the generation of alkanes and phytosterols. These results identified plant compartments that may have a function in resistance against SRZ (plasma membrane) and susceptibility towards SRS (endoplasmic reticulum) that need more attention in the future.


Asunto(s)
Sorghum , Basidiomycota , Grano Comestible , Perfilación de la Expresión Génica , Lípidos , Enfermedades de las Plantas/microbiología , Sorghum/genética , Sorghum/microbiología , Transcriptoma
8.
J Fungi (Basel) ; 8(5)2022 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-35628753

RESUMEN

Genome comparison between the maize pathogens Ustilago maydis and Sporisorium reilianum revealed a large diversity region (19-1) containing nearly 30 effector gene candidates, whose deletion severely hampers virulence of both fungi. Dissection of the S. reilianum gene cluster resulted in the identification of one major contributor to virulence, virulence-associated gene 2 (vag2; sr10050). Quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR) experiments revealed high expression of vag2 during biotrophic growth of S. reilianum. Using the yeast secretion trap assay, we confirmed the existence of a functional signal peptide allowing protein secretion via the conventional secretory pathway. We identified the cytoplasmic maize chorismate mutase ZmCM2 by yeast two-hybrid screening as a possible interaction partner of Vag2. Interaction of the two proteins in planta was confirmed by bimolecular fluorescence complementation. qRT-PCR experiments revealed vag2-dependent downregulation of salicylic acid (SA)-induced genes, which correlated with higher SA levels in plant tissues colonized by Δvag2 deletion strains relative to S. reilianum wildtype strains. Metabolite analysis suggested rewiring of pathogen-induced SA biosynthesis by preferential conversion of the SA precursor chorismate into the aromatic amino acid precursor prephenate by ZmCM2 in the presence of Vag2. Possibly, the binding of Vag2 to ZmCM2 inhibits the back reaction of the ZmCM2-catalyzed interconversion of chorismate and prephenate, thus contributing to fungal virulence by lowering the plant SA-induced defenses.

9.
J Fungi (Basel) ; 8(2)2022 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-35205901

RESUMEN

The mitochondrial electron transport chain consists of the classical protein complexes (I-IV) that facilitate the flow of electrons and coupled oxidative phosphorylation to produce metabolic energy. The canonical route of electron transport may diverge by the presence of alternative components to the electron transport chain. The following study comprises the bioinformatic identification and functional characterization of a putative alternative oxidase in the smut fungus Sporisorium reilianum f. sp. zeae. This alternative respiratory component has been previously identified in other eukaryotes and is essential for alternative respiration as a response to environmental and chemical stressors, as well as for developmental transitionaoxs during the life cycle of an organism. A growth inhibition assay, using specific mitochondrial inhibitors, functionally confirmed the presence of an antimycin-resistant/salicylhydroxamic acid (SHAM)-sensitive alternative oxidase in the respirasome of S. reilianum. Gene disruption experiments revealed that this enzyme is involved in the pathogenic stage of the fungus, with its absence effectively reducing overall disease incidence in infected maize plants. Furthermore, gene expression analysis revealed that alternative oxidase plays a prominent role in the teliospore developmental stage, in agreement with favoring alternative respiration during quiescent stages of an organism's life cycle.

10.
J Fungi (Basel) ; 7(8)2021 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-34436199

RESUMEN

Smut fungi are a large group of mainly biotrophic plant pathogens, many of which cause disease on cereal crops [...].

12.
Int J Mol Sci ; 21(11)2020 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-32485941

RESUMEN

Mitochondria are important organelles in eukaryotes that provide energy for cellular processes. Their function is highly conserved and depends on the expression of nuclear encoded genes and genes encoded in the organellar genome. Mitochondrial DNA replication is independent of the replication control of nuclear DNA and as such, mitochondria may behave as selfish elements, so they need to be controlled, maintained and reliably inherited to progeny. Phytopathogenic fungi meet with special environmental challenges within the plant host that might depend on and influence mitochondrial functions and services. We find that this topic is basically unexplored in the literature, so this review largely depends on work published in other systems. In trying to answer elemental questions on mitochondrial functioning, we aim to introduce the aspect of mitochondrial functions and services to the study of plant-microbe-interactions and stimulate phytopathologists to consider research on this important organelle in their future projects.


Asunto(s)
Núcleo Celular/genética , ADN Mitocondrial/genética , Hongos/genética , Basidiomycota/genética , Cryptococcus neoformans/genética , Genes Fúngicos , Haploidia , Saccharomyces/genética
13.
Front Plant Sci ; 11: 95, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32140166

RESUMEN

Sporisorium reilianum f. sp. zeae (SRZ) is a biotrophic fungus causing head smut in maize. Maize infection with SRZ leads to very little cell death suggesting the presence of cell-death suppressinpg effectors. Several hundred effector proteins have been predicted based on genome annotation, genome comparison, and bioinformatic analysis. For only very few of these effectors, an involvement in virulence has been shown. In this work, we started to test a considerable subset of these predicted effector proteins for a possible function in suppressing cell death. We generated an expression library of 62 proteins of SRZ under the control of a strong constitutive plant promoter for delivery into plant cells via Agrobacterium tumefaciens-mediated transient transformation. Potential apoplastic effectors with high cysteine content were cloned with signal peptide while potential intracellular effectors were also cloned without signal peptide to ensure proper localization after expression in plant cells. After infiltration of Nicotiana benthamiana leaves, infiltration sites were evaluated for apparent signs of hypersensitive cell death in absence or presence of the elicitin INF1 of Phytophthora infestans. None of the tested candidates was able to induce cell death, and most were unable to suppress INF1-induced cell death. However, the screen revealed one predicted cytoplasmic effector (sr16441) of SRZ that was able to reliably suppress INF1-induced cell death when transiently expressed in N. benthamiana lacking its predicted secretion signal peptide. This way, we discovered a putative function for one new effector of SRZ.

14.
New Phytol ; 225(3): 1134-1142, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31134629

RESUMEN

Rapid (co-)evolution at multiple timescales is a hallmark of plant-microbe interactions. The mechanistic basis for the rapid evolution largely rests on the features of the genomes of the interacting partners involved. Here, we review recent insights into genomic characteristics and mechanisms that enable rapid evolution of both plants and phytopathogens. These comprise fresh insights in allelic series of matching pairs of resistance and avirulence genes, the generation of novel pathogen effectors, the recently recognised small RNA warfare, and genomic aspects of secondary metabolite biosynthesis. In addition, we discuss the putative contributions of permissive host environments, transcriptional plasticity and the role of ploidy on the interactions. We conclude that the means underlying the rapid evolution of plant-microbe interactions are multifaceted and depend on the particular nature of each interaction.


Asunto(s)
Evolución Molecular , Genómica , Interacciones Huésped-Patógeno/genética , ARN de Planta/genética , Metabolismo Secundario/genética , Virulencia/genética
15.
Mol Plant Pathol ; 20(1): 124-136, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30136754

RESUMEN

The biotrophic maize head smut fungus Sporisorium reilianum is a close relative of the tumour-inducing maize smut fungus Ustilago maydis with a distinct disease aetiology. Maize infection with S. reilianum occurs at the seedling stage, but spores first form in inflorescences after a long endophytic growth phase. To identify S. reilianum-specific virulence effectors, we defined two gene sets by genome comparison with U. maydis and with the barley smut fungus Ustilago hordei. We tested virulence function by individual and cluster deletion analysis of 66 genes and by using a sensitive assay for virulence evaluation that considers both disease incidence (number of plants with a particular symptom) and disease severity (number and strength of symptoms displayed on any individual plant). Multiple deletion strains of S. reilianum lacking genes of either of the two sets (sr10057, sr10059, sr10079, sr10703, sr11815, sr14797 and clusters uni5-1, uni6-1, A1A2, A1, A2) were affected in virulence on the maize cultivar 'Gaspe Flint', but each of the individual gene deletions had only a modest impact on virulence. This indicates that the virulence of S. reilianum is determined by a complex repertoire of different effectors which each contribute incrementally to the aggressiveness of the pathogen.


Asunto(s)
Proteínas Fúngicas/metabolismo , Enfermedades de las Plantas/microbiología , Ustilaginales/metabolismo , Ustilaginales/patogenicidad , Zea mays/microbiología , Genoma Fúngico , Inflorescencia/microbiología , Fenotipo , Ustilaginales/genética , Virulencia , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
16.
Int J Mol Sci ; 19(5)2018 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-29734724

RESUMEN

Of the many ways that plants interact with microbes, three aspects are highlighted in this issue: interactions where the plant benefits from the microbes, interactions where the plant suffers, and interactions where the plant serves as habitat for microbial communities. In this editorial, the fourteen articles published in the Special Issue Plant⁻Microbe Interaction 2017 are summarized and discussed as part of the global picture of the current understanding of plant-microbe interactions.


Asunto(s)
Interacciones Microbianas/genética , Microbiota/genética , Plantas/microbiología , Streptomyces/genética , Biodegradación Ambiental , Interacciones Microbianas/fisiología , Plantas/genética , Rodopsina/genética , Transcriptoma/genética
17.
Int J Mol Sci ; 19(3)2018 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-29543717

RESUMEN

Many plant-pathogenic fungi are highly host-specific. In most cases, host-specific interactions evolved at the time of speciation of the respective host plants. However, host jumps have occurred quite frequently, and still today the greatest threat for the emergence of new fungal diseases is the acquisition of infection capability of a new host by an existing plant pathogen. Understanding the mechanisms underlying host-switching events requires knowledge of the factors determining host-specificity. In this review, we highlight molecular methods that use a comparative approach for the identification of host-specificity factors. These cover a wide range of experimental set-ups, such as characterization of the pathosystem, genotyping of host-specific strains, comparative genomics, transcriptomics and proteomics, as well as gene prediction and functional gene validation. The methods are described and evaluated in view of their success in the identification of host-specificity factors and the understanding of their functional mechanisms. In addition, potential methods for the future identification of host-specificity factors are discussed.


Asunto(s)
Hongos/patogenicidad , Genoma Fúngico , Especificidad del Huésped , Plantas/microbiología , Hongos/genética , Hongos/metabolismo , Virulencia/genética
18.
Genome Biol Evol ; 10(2): 629-645, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29390140

RESUMEN

Plants and fungi display a broad range of interactions in natural and agricultural ecosystems ranging from symbiosis to parasitism. These ecological interactions result in coevolution between genes belonging to different partners. A well-understood example is secreted fungal effector proteins and their host targets, which play an important role in pathogenic interactions. Biotrophic smut fungi (Basidiomycota) are well-suited to investigate the evolution of plant pathogens, because several reference genomes and genetic tools are available for these species. Here, we used the genomes of Sporisorium reilianum f. sp. zeae and S. reilianum f. sp. reilianum, two closely related formae speciales infecting maize and sorghum, respectively, together with the genomes of Ustilago hordei, Ustilago maydis, and Sporisorium scitamineum to identify and characterize genes displaying signatures of positive selection. We identified 154 gene families having undergone positive selection during species divergence in at least one lineage, among which 77% were identified in the two investigated formae speciales of S. reilianum. Remarkably, only 29% of positively selected genes encode predicted secreted proteins. We assessed the contribution to virulence of nine of these candidate effector genes in S. reilianum f. sp. zeae by deleting individual genes, including a homologue of the effector gene pit2 previously characterized in U. maydis. Only the pit2 deletion mutant was found to be strongly reduced in virulence. Additional experiments are required to understand the molecular mechanisms underlying the selection forces acting on the other candidate effector genes, as well as the large fraction of positively selected genes encoding predicted cytoplasmic proteins.


Asunto(s)
Basidiomycota/genética , Genes Fúngicos , Enfermedades de las Plantas/microbiología , Plantas/microbiología , Genómica , Familia de Multigenes , Filogenia , Selección Genética , Ustilaginales/genética , Factores de Virulencia/genética
19.
Plant Signal Behav ; 11(5): e1167300, 2016 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-27058118

RESUMEN

sporisorium reilianum f. sp. zeae is a biotrophic smut fungus that infects maize (Zea mays). Among others, the fungus-plant interaction is governed by secreted fungal effector proteins. The effector SUPPRESSOR OF APICAL DOMINANCE1 (SAD1) changes the development of female inflorescences and induces outgrowth of subapical ears in S. reilianum-infected maize. When stably expressed in Arabidopsis thaliana as a GFP-SAD1 fusion protein, SAD1 induces earlier inflorescence branching and abortion of siliques. Absence of typical hormone-dependent phenotypes in other parts of the transgenic A. thaliana plants expressing GFP-SAD1 hint to a hormone-independent induction of bud outgrowth by SAD1. Silique abortion and bud outgrowth are also known to be controlled by carbon source concentration and by stress-induced molecules, making these factors interesting potential SAD1 targets.


Asunto(s)
Arabidopsis/microbiología , Frutas/microbiología , Proteínas Fúngicas/metabolismo , Inflorescencia/microbiología , Ustilaginales/metabolismo , Arabidopsis/crecimiento & desarrollo , Proteínas Fluorescentes Verdes/metabolismo , Plantas Modificadas Genéticamente , Zea mays/microbiología
20.
Genome Biol Evol ; 8(3): 681-704, 2016 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-26872771

RESUMEN

Smut fungi are plant pathogens mostly parasitizing wild species of grasses as well as domesticated cereal crops. Genome analysis of several smut fungi including Ustilago maydis revealed a singular clustered organization of genes encoding secreted effectors. In U. maydis, many of these clusters have a role in virulence. Reconstructing the evolutionary history of clusters of effector genes is difficult because of their intrinsically fast evolution, which erodes the phylogenetic signal and homology relationships. Here, we describe the use of comparative evolutionary analyses of quality draft assemblies of genomes to study the mechanisms of this evolution. We report the genome sequence of a South African isolate of Sporisorium scitamineum, a smut fungus parasitizing sugar cane with a phylogenetic position intermediate to the two previously sequenced species U. maydis and Sporisorium reilianum. We show that the genome of S. scitamineum contains more and larger gene clusters encoding secreted effectors than any previously described species in this group. We trace back the origin of the clusters and find that their evolution is mainly driven by tandem gene duplication. In addition, transposable elements play a major role in the evolution of the clustered genes. Transposable elements are significantly associated with clusters of genes encoding fast evolving secreted effectors. This suggests that such clusters represent a case of genome compartmentalization that restrains the activity of transposable elements on genes under diversifying selection for which this activity is potentially beneficial, while protecting the rest of the genome from its deleterious effect.


Asunto(s)
Evolución Molecular , Genoma Fúngico , Saccharum/genética , Ustilago/genética , Elementos Transponibles de ADN/genética , Proteínas Fúngicas/genética , Duplicación de Gen , Genómica , Familia de Multigenes , Filogenia , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Saccharum/microbiología , Ustilago/patogenicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA