Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
1.
Redox Biol ; 76: 103308, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39167912

RESUMEN

In rats decreased bioavailability of nitric oxide induces oxidative stress and right heart failure. Oxidative stress can activate matrix metalloproteinase-2 (MMP2). We addressed the question whether increasing oxidative defense by administration of the SOD mimetic Tempol or direct inhibition of MMP2 activity by SB-3CT mitigates right heart failure. Rats received l-NAME for four weeks and during week three and four treatment groups received either Tempol or SB-3CT in addition. After four weeks heart function was analyzed by echocardiography, organ weights and expression of NPPB and COL1A1 were analyzed, oxidative stress was monitored by DHE-staining and MMP2 activity was quantified by proteolytic auto-activation, zymography, and troponin I degradation. l-NAME induced oxidative stress and MMP2 activity stronger in the right ventricle than in the left ventricle. Troponin I, a MMP2 substrate, was degraded in right ventricles. Tempol reduced oxidative stress and preferentially affected the expression of fibrotic genes (i.e. COL1A1) and fibrosis. Tempol and SB-3CT mitigated right but not left ventricular hypertrophy. Neither SB-3CT nor Tempol alone strongly improved right ventricular function. In conclusion, both MMP2 activity and oxidative stress contribute to right ventricular failure but neither is MMP2 activation linked to oxidative stress nor does oxidative stress and MMP2 activity have common targets.

2.
Pflugers Arch ; 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39191963

RESUMEN

Physiology is a scientific discipline of how people's and animals' bodies function that requires traditionally suitable experimental models that often rely on animals. However, at the end of the 50th of the last century, researchers themselves addressed concerns about the use of animals for biomedical science and physiology in particular. At that time, the so-called 3R strategy was implicated where the three "R" stand for replacement, reduction, and refinement. When addressing these concerns, researchers nevertheless realized that a critical dispute about experimental models in the light of the 3R initiative may require further attention to other points such as robustness, registration, reporting, reproducibility, and rigor of the work. The question that has to be addressed now is first whether the use of animals in physiology changed in the post-3R period, whether it led to a replacement, reduction, or refinement of animal handling, and most importantly, how this affected the scientific progress in (patho)physiology. In order to address open questions concerning the relationship between the use of animals and physiological research, complete volumes of the Pflügers Archiv - European Journal of Physiology were analyzed every 10 years starting in 1950 and ending in 2020 and compared to volumes of the Journal of Physiology. It analyzed how scientists organize their projects published in the journal and what kind of models they used. The results show that physiological science has dramatically changed in the last 70 years. Replacement, reduction, and refinement were achieved to a certain level. However, during the last years, no further achievement could be seen. It seems that a certain level of animal testing is required for biomedical science and physiology in particular. Physiological studies in the present time are dominated by investigation of the physiological function of small rodents mainly mice and rats with only a few exceptions. The analysis also shows that in the future, researchers must have a critical look at further requirements of their research such as data robustness, improvement of reproducibility of data, and generation of rigor data as a prerequisite to improve our physiological view on life.

3.
Nat Cardiovasc Res ; 3(7): 819-840, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39196177

RESUMEN

The molecular mechanisms of progressive right heart failure are incompletely understood. In this study, we systematically examined transcriptomic changes occurring over months in isolated cardiomyocytes or whole heart tissues from failing right and left ventricles in rat models of pulmonary artery banding (PAB) or aortic banding (AOB). Detailed bioinformatics analyses resulted in the identification of gene signature, protein and transcription factor networks specific to ventricles and compensated or decompensated disease states. Proteomic and RNA-FISH analyses confirmed PAB-mediated regulation of key genes and revealed spatially heterogeneous mRNA expression in the heart. Intersection of rat PAB-specific gene sets with transcriptome datasets from human patients with chronic thromboembolic pulmonary hypertension (CTEPH) led to the identification of more than 50 genes whose expression levels correlated with the severity of right heart disease, including multiple matrix-regulating and secreted factors. These data define a conserved, differentially regulated genetic network associated with right heart failure in rats and humans.


Asunto(s)
Insuficiencia Cardíaca , Ventrículos Cardíacos , Animales , Humanos , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/metabolismo , Ventrículos Cardíacos/metabolismo , Ratas , Modelos Animales de Enfermedad , Transcriptoma , Masculino , Perfilación de la Expresión Génica , Miocitos Cardíacos/metabolismo , Redes Reguladoras de Genes , Ratas Sprague-Dawley , Hipertensión Pulmonar/genética , Proteómica , Disfunción Ventricular Derecha/genética , Disfunción Ventricular Derecha/fisiopatología
4.
Int J Mol Sci ; 25(11)2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38892401

RESUMEN

Increased mitochondrial reactive oxygen species (ROS) formation is important for the development of right ventricular (RV) hypertrophy (RVH) and failure (RVF) during pulmonary hypertension (PH). ROS molecules are produced in different compartments within the cell, with mitochondria known to produce the strongest ROS signal. Among ROS-forming mitochondrial proteins, outer-mitochondrial-membrane-located monoamine oxidases (MAOs, type A or B) are capable of degrading neurotransmitters, thereby producing large amounts of ROS. In mice, MAO-B is the dominant isoform, which is present in almost all cell types within the heart. We analyzed the effect of an inducible cardiomyocyte-specific knockout of MAO-B (cmMAO-B KO) for the development of RVH and RVF in mice. Right ventricular hypertrophy was induced by pulmonary artery banding (PAB). RV dimensions and function were measured through echocardiography. ROS production (dihydroethidium staining), protein kinase activity (PamStation device), and systemic hemodynamics (in vivo catheterization) were assessed. A significant decrease in ROS formation was measured in cmMAO-B KO mice during PAB compared to Cre-negative littermates, which was associated with reduced activity of protein kinases involved in hypertrophic growth. In contrast to littermates in which the RV was dilated and hypertrophied following PAB, RV dimensions were unaffected in response to PAB in cmMAO-B KO mice, and no decline in RV systolic function otherwise seen in littermates during PAB was measured in cmMAO-B KO mice. In conclusion, cmMAO-B KO mice are protected against RV dilatation, hypertrophy, and dysfunction following RV pressure overload compared to littermates. These results support the hypothesis that cmMAO-B is a key player in causing RV hypertrophy and failure during PH.


Asunto(s)
Hipertensión Pulmonar , Hipertrofia Ventricular Derecha , Monoaminooxidasa , Especies Reactivas de Oxígeno , Animales , Masculino , Ratones , Modelos Animales de Enfermedad , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/etiología , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/patología , Ventrículos Cardíacos/patología , Ventrículos Cardíacos/metabolismo , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/etiología , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/patología , Hipertrofia Ventricular Derecha/metabolismo , Hipertrofia Ventricular Derecha/genética , Hipertrofia Ventricular Derecha/etiología , Hipertrofia Ventricular Derecha/patología , Ratones Noqueados , Monoaminooxidasa/genética , Monoaminooxidasa/metabolismo , Monoaminooxidasa/deficiencia , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Especies Reactivas de Oxígeno/metabolismo , Disfunción Ventricular Derecha/metabolismo , Disfunción Ventricular Derecha/genética , Disfunción Ventricular Derecha/etiología , Disfunción Ventricular Derecha/patología
5.
Biomolecules ; 13(6)2023 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-37371593

RESUMEN

Serotonin effects on cardiac hypertrophy, senescence, and failure are dependent either on activation of specific receptors or serotonin uptake and serotonin degradation by monoamine oxidases (MAOs). Receptor-dependent effects are specific for serotonin, but MAO-dependent effects are nonspecific as MAOs also metabolize other substrates such as catecholamines. Our study evaluates the role of MAO-A in serotonin- and norepinephrine-dependent cell damage. Experiments were performed in vivo to study the regulation of MAOA and MAOB expression and in vitro on isolated cultured adult rat ventricular cardiomyocytes (cultured for 24 h) to study the function of MAO-A. MAOA but not MAOB expression increased in maladaptive hypertrophic stages. Serotonin and norepinephrine induced morphologic cell damage (loss of rod-shaped cell structure). However, MAO-A inhibition suppressed serotonin-dependent but not norepinephrine-dependent damages. Serotonin but not norepinephrine caused a reduction in cell shortening in nondamaged cells. Serotonin induced mitochondria-dependent oxidative stress. In vivo, MAOA was induced during aging and hypertension but the expression of the corresponding serotonin uptake receptor (SLC6A4) was reduced and enzymes that reduce either oxidative stress (CAT) or accumulation of 5-hydroxyindolacetaldehyde (ALDH2) were induced. In summary, the data show that MAO-A potentially affects cardiomyocytes' function but that serotonin is not necessarily the native substrate.


Asunto(s)
Miocitos Cardíacos , Serotonina , Ratas , Animales , Miocitos Cardíacos/metabolismo , Serotonina/farmacología , Serotonina/metabolismo , Norepinefrina/farmacología , Norepinefrina/metabolismo , Monoaminooxidasa/metabolismo , Cardiomegalia/metabolismo
6.
Int J Mol Sci ; 24(7)2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-37047436

RESUMEN

On the one hand, reactive oxygen species (ROS) are involved in the onset and progression of a wide array of diseases. On the other hand, these are a part of signaling pathways related to cell metabolism, growth and survival. While ROS are produced at various cellular sites, in cardiomyocytes the largest amount of ROS is generated by mitochondria. Apart from the electron transport chain and various other proteins, uncoupling protein (UCP) and monoamine oxidases (MAO) have been proposed to modify mitochondrial ROS formation. Here, we review the recent information on UCP and MAO in cardiac injuries induced by ischemia-reperfusion (I/R) as well as protection from I/R and heart failure secondary to I/R injury or pressure overload. The current data in the literature suggest that I/R will preferentially upregulate UCP2 in cardiac tissue but not UCP3. Studies addressing the consequences of such induction are currently inconclusive because the precise function of UCP2 in cardiac tissue is not well understood, and tissue- and species-specific aspects complicate the situation. In general, UCP2 may reduce oxidative stress by mild uncoupling and both UCP2 and UCP3 affect substrate utilization in cardiac tissue, thereby modifying post-ischemic remodeling. MAOs are important for the physiological regulation of substrate concentrations. Upon increased expression and or activity of MAOs, however, the increased production of ROS and reactive aldehydes contribute to cardiac alterations such as hypertrophy, inflammation, irreversible cardiomyocyte injury, and failure.


Asunto(s)
Mitocondrias , Monoaminooxidasa , Especies Reactivas de Oxígeno/metabolismo , Proteínas Desacopladoras Mitocondriales/metabolismo , Monoaminooxidasa/metabolismo , Proteína Desacopladora 2/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Proteína Desacopladora 3/metabolismo
7.
Front Immunol ; 14: 1140592, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36969210

RESUMEN

Objective: The pro-inflammatory cytokine interleukin-1ß (IL-1ß) plays a central role in host defense against infections. High systemic IL-1ß levels, however, promote the pathogenesis of inflammatory disorders. Therefore, mechanisms controlling IL-1ß release are of substantial clinical interest. Recently, we identified a cholinergic mechanism inhibiting the ATP-mediated IL-1ß release by human monocytes via nicotinic acetylcholine receptor (nAChR) subunits α7, α9 and/or α10. We also discovered novel nAChR agonists that trigger this inhibitory function in monocytic cells without eliciting ionotropic functions at conventional nAChRs. Here, we investigate the ion flux-independent signaling pathway that links nAChR activation to the inhibition of the ATP-sensitive P2X7 receptor (P2X7R). Methods: Different human and murine mononuclear phagocytes were primed with lipopolysaccharide and stimulated with the P2X7R agonist BzATP in the presence or absence of nAChR agonists, endothelial NO synthase (eNOS) inhibitors, and NO donors. IL-1ß was measured in cell culture supernatants. Patch-clamp and intracellular Ca2+ imaging experiments were performed on HEK cells overexpressing human P2X7R or P2X7R with point mutations at cysteine residues in the cytoplasmic C-terminal domain. Results: The inhibitory effect of nAChR agonists on the BzATP-induced IL-1ß release was reversed in the presence of eNOS inhibitors (L-NIO, L-NAME) as well as in U937 cells after silencing of eNOS expression. In peripheral blood mononuclear leukocytes from eNOS gene-deficient mice, the inhibitory effect of nAChR agonists was absent, suggesting that nAChRs signal via eNOS to inhibit the BzATP-induced IL-1ß release. Moreover, NO donors (SNAP, S-nitroso-N-acetyl-DL-penicillamine; SIN-1) inhibited the BzATP-induced IL-1ß release by mononuclear phagocytes. The BzATP-induced ionotropic activity of the P2X7R was abolished in the presence of SIN-1 in both, Xenopus laevis oocytes and HEK cells over-expressing the human P2X7R. This inhibitory effect of SIN-1 was absent in HEK cells expressing P2X7R, in which C377 was mutated to alanine, indicating the importance of C377 for the regulation of the P2X7R function by protein modification. Conclusion: We provide first evidence that ion flux-independent, metabotropic signaling of monocytic nAChRs involves eNOS activation and P2X7R modification, resulting in an inhibition of ATP signaling and ATP-mediated IL-1ß release. This signaling pathway might be an interesting target for the treatment of inflammatory disorders.


Asunto(s)
Leucocitos Mononucleares , Receptores Purinérgicos P2X7 , Humanos , Ratones , Animales , Interleucina-1beta/metabolismo , Leucocitos Mononucleares/metabolismo , Receptores Purinérgicos P2X7/genética , Receptores Purinérgicos P2X7/metabolismo , Monocitos/metabolismo , Adenosina Trifosfato/metabolismo , Óxido Nítrico Sintasa/metabolismo
8.
Cells ; 11(24)2022 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-36552716

RESUMEN

Metabolic effects of physical activity may be reno-protective in the context of hypertension, although exercise stresses kidneys. Aldosterone participates in renal disease in hypertension, but exercise affects the plasma concentration of aldosterone. This study was designed to evaluate whether physical activity and pharmacological treatment by aldosterone have additive effects on renal protection in hypertensive rats. Female spontaneously hypertensive rats (SHR) or normotensive Wistar rats performed voluntary running wheel activity alone or in combination with aldosterone blockade (spironolactone). The following groups were studied: young and pre-hypertensive SHR (n = 5 sedentary; n = 10 running wheels, mean body weight 129 g), 10-month-old Wistar rats (n = 6 sedentary; n = 6 running wheels, mean body weight 263 g), 10-month-old SHRs (n = 18 sedentary, mean body weight 224 g; n = 6 running wheels, mean body weight 272 g; n = 6 aldosterone, mean body weight 219 g; n = 6 aldosterone and running wheels, mean body weight 265 g). Another group of SHRs had free access to running wheels for 6 months and kept sedentary for the last 3 months (n = 6, mean body weight 240 g). Aldosterone was given for the last 4 months. SHRs from the running groups had free access to running wheels beginning at the age of 6 weeks. Renal function was analyzed by microalbuminuria (Alb/Cre), urinary secretion of kidney injury molecule-1 (uKim-1), and plasma blood urea nitrogen (BUN) concentration. Molecular adaptation of the kidney to hypertension and its modification by spironolactone and/or exercise were analyzed by real-time PCR, immunoblots, and histology. After six months of hypertension, rats had increased Alb/Cre and BUN but normal uKim-1. Voluntary free running activity normalized BUN but not Alb/Cre, whereas spironolactone reduced Alb/Cre but not BUN. Exercise constitutively increased renal expression of proprotein convertase subtilisin/kexin type 9 (PCSK9; mRNA and protein) and arginase-2 (mRNA). Spironolactone reduced these effects. uKim-1 increased in rats performing voluntary running wheel activity exercise irrespectively of blood pressure and aldosterone blockade. We observed independent but no additive effects of aldosterone blockade and physical activity on renal function and on molecules potentially affecting renal lipid metabolism.


Asunto(s)
Hipertensión , Proproteína Convertasa 9 , Animales , Femenino , Ratas , Aldosterona , Peso Corporal , Hipertensión/tratamiento farmacológico , Riñón/metabolismo , Ratas Endogámicas SHR , Ratas Wistar , ARN Mensajero/metabolismo , Espironolactona/farmacología , Actividad Motora/fisiología
9.
Nanoscale Adv ; 4(15): 3182-3193, 2022 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-36132815

RESUMEN

In this study, we present a strategy for the synthesis of catecholamine functionalised gold nanoparticles and investigated their multivalent interactions with adrenergic receptors in different biological systems. The catecholamines adrenaline and noradrenaline represent key examples of adrenergic agonists. We used gold nanoparticles as carriers and functionalised them on their surface with a variety of these neurotransmitter molecules. For this purpose, we synthesised each ligand separately using mercaptoundecanoic acid as a bifunctional linking unit and adrenaline (or noradrenaline) as a biogenic amine. This ligand was then immobilised onto the surface of presynthesised spherical monodispersive gold nanoparticles in a ligand exchange reaction. After detailed analytical characterisations, the functionalised gold nanoparticles were investigated for their interactions with adrenergic receptors in intestinal, cardiac and respiratory tissues. Whereas the contractility of respiratory smooth muscle cells (regulated by ß2-receptors) was not influenced, (nor)adrenaline functionalised nanoparticles administered in nanomolar concentrations induced epithelial K+ secretion (mediated via different ß-receptors) and increased contractility of isolated rat cardiomyocytes (mediated by ß1-receptors). The present results suggest differences in the accessibility of adrenergic agonists bound to gold nanoparticles to the binding pockets of different ß-receptor subtypes.

10.
Biomedicines ; 10(7)2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35885053

RESUMEN

Lysyl oxidase (LOX) is a secretory protein that catalyzes elastin and collagen cross-linking. Lowering LOX expression and activity in endothelial cells is associated with a high risk of aneurysms and vascular malformation. Interleukin-6 (IL-6), elevated in hypertension, is known to suppress LOX expression. The influence of anti-hypertensive medication on the plasma LOX concentration is currently unknown. In a cohort of 34 patients diagnosed with resistant hypertension and treated with up to nine different drugs, blood concentration of LOX was analyzed to identify drugs that have an impact on plasma LOX concentration. Key findings were confirmed in a second independent patient cohort of 37 patients diagnosed with dilated cardiomyopathy. Blood concentrations of aldosterone and IL-6 were analyzed. In vitro, the effect of IL-6 on LOX expression was analyzed in endothelial cells. Patients receiving aldosterone antagonists had the highest plasma LOX concentration in both cohorts. This effect was independent of sex, age, blood pressure, body mass index, and co-medication. Blood aldosterone concentration correlates with plasma IL-6 concentration. In vitro, IL-6 decreased the expression of LOX in endothelial cells but not fibroblasts. Aldosterone was identified as a factor that affects blood concentration of LOX in an IL-6-dependent manner.

11.
Pflugers Arch ; 474(10): 1041-1042, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35904637

Asunto(s)
Relaxina , Humanos
12.
Int J Mol Sci ; 23(12)2022 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-35742954

RESUMEN

Hypoxia upregulates PCSK9 expression in the heart, and PCSK9 affects the function of myocytes. This study aimed to investigate the impact of PCSK9 on reperfusion injury in rats and mice fed normal or high-fat diets. Either the genetic knockout of PCSK9 (mice) or the antagonism of circulating PCSK9 via Pep2-8 (mice and rats) was used. Isolated perfused hearts were exposed to 45 min of ischemia followed by 120 min of reperfusion. In vivo, mice were fed normal or high-fat diets (2% cholesterol) for eight weeks prior to coronary artery occlusion (45 min of ischemia) and reperfusion (120 min). Ischemia/reperfusion upregulates PCSK9 expression (rats and mice) and releases it into the perfusate. The inhibition of extracellular PCSK9 does not affect infarct sizes or functional recovery. However, genetic deletion largely reduces infarct size and improves post-ischemic recovery in mice ex vivo but not in vivo. A high-fat diet reduced the survival rate during ischemia and reperfusion, but in a PCSK9-independent manner that was associated with increased plasma matrix metalloproteinase (MMP)9 activity. PCSK9 deletion, but not the inhibition of extracellular PCSK9, reduces infarct sizes in ex vivo hearts, but this effect is overridden in vivo by factors such as MMP9.


Asunto(s)
Colesterol , Proproteína Convertasa 9 , Animales , Infarto , Ratones , Proproteína Convertasa 9/genética , Ratas , Subtilisinas
13.
Front Cell Neurosci ; 16: 779081, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35431807

RESUMEN

Activation of nicotinic acetylcholine receptors (nAChRs) expressed by innate immune cells can attenuate pro-inflammatory responses. Silent nAChR agonists, which down-modulate inflammation but have little or no ionotropic activity, are of outstanding clinical interest for the prevention and therapy of numerous inflammatory diseases. Here, we compare two silent nAChR agonists, phosphocholine, which is known to interact with nAChR subunits α7, α9, and α10, and pCF3-N,N-diethyl-N'-phenyl-piperazine (pCF3-diEPP), a previously identified α7 nAChR silent agonist, regarding their anti-inflammatory properties and their effects on ionotropic nAChR functions. The lipopolysaccharide (LPS)-induced release of interleukin (IL)-6 by primary murine macrophages was inhibited by pCF3-diEPP, while phosphocholine was ineffective presumably because of instability. In human whole blood cultures pCF3-diEPP inhibited the LPS-induced secretion of IL-6, TNF-α and IL-1ß. The ATP-mediated release of IL-1ß by LPS-primed human peripheral blood mononuclear leukocytes, monocytic THP-1 cells and THP-1-derived M1-like macrophages was reduced by both phosphocholine and femtomolar concentrations of pCF3-diEPP. These effects were sensitive to mecamylamine and to conopeptides RgIA4 and [V11L; V16D]ArIB, suggesting the involvement of nAChR subunits α7, α9 and/or α10. In two-electrode voltage-clamp measurements pCF3-diEPP functioned as a partial agonist and a strong desensitizer of classical human α9 and α9α10 nAChRs. Interestingly, pCF3-diEPP was more effective as an ionotropic agonist at these nAChRs than at α7 nAChR. In conclusion, phosphocholine and pCF3-diEPP are potent agonists at unconventional nAChRs expressed by monocytic and macrophage-like cells. pCF3-diEPP inhibits the LPS-induced release of pro-inflammatory cytokines, while phosphocholine is ineffective. However, both agonists signal via nAChR subunits α7, α9 and/or α10 to efficiently down-modulate the ATP-induced release of IL-1ß. Compared to phosphocholine, pCF3-diEPP is expected to have better pharmacological properties. Thus, low concentrations of pCF3-diEPP may be a therapeutic option for the treatment of inflammatory diseases including trauma-induced sterile inflammation.

14.
Eur J Cardiothorac Surg ; 62(4)2022 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-35290463

RESUMEN

OBJECTIVES: Clinical studies have indicated minor beneficial effects of the calcium sensitizer levosimendan on clinical outcomes in patients undergoing cardiac surgery. Here, the influence of levosimendan administered 24 h before cardiac arrest on myocardial function was examined in rat hearts perfused in a Langendorff model. METHODS: Levosimendan (Levo group) or NaCl (control group) was administered to 53 rats via drinking water 24 h prior to mounting excised hearts on a Langendorff apparatus. Cardiac arrest with or without cardioplegia was induced in both groups; another set of hearts was perfused continuously. During 90-min reperfusion at 36°C, functional parameters were measured and normalized to baseline values. Troponin I was quantified in coronary sinus effluent, and the functionality of isolated cardiomyocytes was studied. RESULTS: Oral application of levosimendan showed therapeutic efficacy. Baseline values were similar in the Levo and NaCl groups except for coronary flow. After ischaemia and reperfusion, Levo hearts did not recover better than NaCl hearts {left ventricular derived pressure: 63 [standard deviation (SD): 36.2] vs 46 (SD: 41.8)% baseline; P = 0.386}, In hearts exposed to cardioplegia, functional recovery only slightly differed in the Levo and NaCl groups [left ventricular derived pressure: 69.96 (SD: 12.7) vs 51.89 (SD: 28.1)% baseline; P = 0.09]. Cell shortening of cardiomyocytes isolated from hearts exposed to ischaemia or perfusion was better in Levo groups [cell shortening: 7.65 (SD: 1.95) %; 7.8 (SD: 1.79)% vs 6.28 (SD: 1.67)%; 6.5 (SD: 1.87)%, P < 0.001]; this benefit was absent in cardioplegia-treated hearts. CONCLUSIONS: Levosimendan applied orally before ischaemia/reperfusion improves functional recovery, but this effect is only moderate when cardioplegia is included. Differences between hearts exposed to cardioplegia or to global ischaemia may indicate why levosimendan-related beneficial effects do not directly translate into better clinical outcome.


Asunto(s)
Agua Potable , Paro Cardíaco , Animales , Calcio , Soluciones Cardiopléjicas/farmacología , Soluciones Cardiopléjicas/uso terapéutico , Paro Cardíaco Inducido , Isquemia , Ratas , Reperfusión , Simendán , Cloruro de Sodio , Troponina I
15.
Antioxid Redox Signal ; 37(4-6): 324-335, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35044239

RESUMEN

Significance: Uncoupling proteins (UCPs) are a family of proteins that allow proton leakage across the inner mitochondrial membrane. Although UCP1, also known as thermogenin, is well known and important for heat generation in brown adipose tissue, striated muscles express two distinct members of UCP, namely UCP2 and UCP3. Unlike UCP1, the main function of UCP2 and UCP3 does not appear to be heat production. Recent Advances: Interestingly, UCP2 is the main isoform expressed in cardiac tissues, whereas UCP3 is the dominant isoform in skeletal muscles. In the past years, researchers have started to investigate the regulation of UCP2 and UCP3 expression in striated muscles. Furthermore, concepts about the proposed functions of UCP2 and UCP3 in striated muscles are developed but are still a matter of debate. Critical Issues: Potential functions of UCP2 and UCP3 in striated muscles include a role in protection against mitochondria-dependent oxidative stress, as transporter for pyruvate, fatty acids, and protons into and out of the mitochondria, and in metabolic sensing. In this context, the different isoform expression of UCP2 and UCP3 in the skeletal and cardiac muscle may be related to different metabolic requirements of the two organs. Future Directions: The level of expression of UCP2 and UCP3 in striated muscles changes in different disease stages. This suggests that UCPs may become drug targets for therapy in the future. Antioxid. Redox Signal. 37, 324-335.


Asunto(s)
Canales Iónicos , Proteínas Mitocondriales , Tejido Adiposo Pardo/metabolismo , Canales Iónicos/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Proteínas Desacopladoras Mitocondriales/metabolismo , Músculo Esquelético/metabolismo , ARN Mensajero/metabolismo , Proteína Desacopladora 2/metabolismo , Proteína Desacopladora 3/genética , Proteína Desacopladora 3/metabolismo
16.
Biology (Basel) ; 12(1)2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36671696

RESUMEN

Hyperuricemia is a risk factor for heart disease. Cardiomyocytes produce uric acid via xanthine oxidase. The enzymatic reaction leads to oxidative stress in uric-acid-producing cells. However, extracellular uric acid is the largest scavenger of reactive oxygen species, specifically to nitrosative stress, which can directly affect cells. Here, the effect of plasma-relevant concentrations of uric acid on adult rat ventricular cardiomyocytes is analyzed. A concentration- and time-dependent reduction of load-free cell shortening is found. This is accompanied by an increased protein expression of ornithine decarboxylase, the rate-limiting enzyme of the polyamine metabolism, suggesting a higher arginine turnover. Subsequently, the effect of uric acid was attenuated if other arginine consumers, such as nitric oxide synthase, are blocked or arginine is added. In the presence of uric acid, calcium transients are increased in cardiomyocytes irrespective of the reduced cell shortening, indicating calcium desensitization. Supplementation of extracellular calcium or stimulation of intracellular calcium release by ß-adrenergic receptor stimulation attenuates the uric-acid-dependent effect. The effects of uric acid are attenuated in the presence of a protein kinase C inhibitor, suggesting that the PKC-dependent phosphorylation of troponin triggers the desensitizing effect. In conclusion, high levels of uric acid stress cardiomyocytes by accelerating the arginine metabolism via the upregulation of ornithine decarboxylase.

17.
Pflugers Arch ; 474(2): 205-215, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34893937

RESUMEN

High physical activity is important to optimize the function of adipose tissue. Dysfunctional adipose tissue contributes to the development of metabolic stress, chronic inflammation, and hypertension. To improve our current understanding of the interaction between physical exercise and adipose tissue, we analyzed the effect of 10 months voluntary running wheel activity of rats on uncoupling protein (UCP) 1 negative white adipose tissue (visceral and subcutaneous adipose tissue, VWAT and SWAT). Analysis was performed via RT-PCR and immunoblot from adipose tissues depicted from adult normotensive and spontaneously hypertensive female rats. UCP1 negative VWAT differed from UCP1 positive WAT and brown adipose tissue (BAT) from interscapular fat depots, by lacking the expression of UCP1 and low expression of Cidea, a transcriptional co-activator of UCP1. High physical activity affected the expression of five genes in SWAT (Visfatin (up), RBP5, adiponectin, Cidea, and Nrg4 (all down)) but only one gene (Visfatin, up) in VWAT. Furthermore, the expression of these genes is differentially regulated in VWAT and SWAT of normotensive and spontaneously hypertensive rats (SHR) under sedentary conditions (UCP2) and exercise (Visfatin, Cidea, Nrg4). Keeping the animals after 6 months of voluntary exercise under observation for an additional period of 4 months without running wheels, Visfatin, Cidea, and Nrg4 were stronger expressed in VWAT of SHRs than in sedentary control rats. In summary, our study shows that SWAT is more responsible to exercise than VWAT.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Biomarcadores/metabolismo , Animales , Femenino , Masculino , Condicionamiento Físico Animal/métodos , Ratas , Ratas Endogámicas SHR , Ratas Wistar , Grasa Subcutánea/metabolismo , Proteína Desacopladora 1/metabolismo
18.
Membranes (Basel) ; 11(11)2021 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-34832065

RESUMEN

Reperfusion is the only feasible therapy following myocardial infarction, but reperfusion has been shown to damage mitochondrial function and disrupt energy production in the heart. Adenine nucleotide translocase 1 (ANT1) facilitates the transfer of ADP/ATP across the inner mitochondrial membrane; therefore, we tested whether ANT1 exerts protective effects on mitochondrial function during ischemia/reperfusion (I/R). The hearts of wild-type (WT) and transgenic ANT1-overexpressing (ANT1-TG) rats were exposed to I/R injury using the standard Langendorff technique, after which mitochondrial function, hemodynamic parameters, infarct size, and components of the contractile apparatus were determined. ANT1-TG hearts expressed higher ANT protein levels, with reduced levels of oxidative 4-hydroxynonenal ANT modifications following I/R. ANT1-TG mitochondria isolated from I/R hearts displayed stable calcium retention capacity (CRC) and improved membrane potential stability compared with WT mitochondria. Mitochondria isolated from ANT1-TG hearts experienced less restricted oxygen consumption than WT mitochondria after I/R. Left ventricular diastolic pressure (Pdia) decreased in ANT1-TG hearts compared with WT hearts following I/R. Preserved diastolic function was accompanied by a decrease in the phospho-lamban (PLB)/sarcoplasmic reticulum calcium ATPase (SERCA2a) ratio in ANT1-TG hearts compared with that in WT hearts. In addition, the phosphorylated (P)-PLB/PLB ratio increased in ANT1-TG hearts after I/R but not in WT hearts, which indicated more effective calcium uptake into the sarcoplasmic reticulum in ANT1-TG hearts. In conclusion, ANT1-TG rat hearts coped more efficiently with I/R than WT rat hearts, which was reflected by preserved mitochondrial energy balance, diastolic function, and calcium dynamics after reperfusion.

19.
Front Cardiovasc Med ; 8: 699283, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34381826

RESUMEN

The effect of high physical activity, performed as voluntary running wheel exercise, on inflammation and vascular adaptation may differ between normotensive and spontaneously hypertensive rats (SHRs). We investigated the effects of running wheel activity on leukocyte mobilization, neutrophil migration into the vascular wall (aorta), and transcriptional adaptation of the vascular wall and compared and combined the effects of high physical activity with that of pharmacological treatment (aldosterone antagonist spironolactone). At the start of the 6th week of life, before hypertension became established in SHRs, rats were provided with a running wheel over a period of 10-months'. To investigate to what extent training-induced changes may underlie a possible regression, controls were also generated by removal of the running wheel for the last 4 months. Aldosterone blockade was achieved upon oral administration of Spironolactone in the corresponding treatment groups for the last 4 months. The number of circulating blood cells was quantified by FACS analysis of peripheral blood. mRNA expression of selected proteins was quantified by RT-PCR. Histology and confocal laser microscopy were used to monitor cell migration. Although voluntary running wheel exercise reduced the number of circulating neutrophils in normotensive rats, it rather increased it in SHRs. Furthermore, running wheel activity in SHRs but not normotensive rats increased the number of natural killer (NK)-cells. Except of the increased expression of plasminogen activator inhibitor (PAI)-1 and reduction of von Willebrand factor (vWF), running wheel activity exerted a different transcriptional response in the vascular tissue of normotensive and hypertensive rats, i.e., lack of reduction of the pro-inflammatory IL-6 in vessels from hypertensive rats. Spironolactone reduced the number of neutrophils; however, in co-presence with high physical activity this effect was blunted. In conclusion, although high physical activity has beneficial effects in normotensive rats, this does not predict similar beneficial effects in the concomitant presence of hypertension and care has to be taken on interactions between pharmacological approaches and high physical activity in hypertensives.

20.
Biology (Basel) ; 10(7)2021 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-34356525

RESUMEN

BACKGROUND: TGFß1 is a growth factor that plays a major role in the remodeling process of the heart by inducing cardiomyocyte dysfunction and apoptosis, as well as fibrosis thereby restricting heart function. TGFß1 mediates its effect via the TGFß receptor I (ALK5) and the activation of SMAD transcription factors, but TGFß1 is also known as activator of phosphoinositide-3-kinase (PI3K) via the non-SMAD signaling pathway. The aim of this study was to investigate whether PI3K is also involved in TGFß1-induced cardiomyocytes apoptosis and contractile dysfunction. METHODS AND RESULTS: Incubation of isolated ventricular cardiomyocytes with TGFß1 resulted in impaired contractile function. Pre-incubation of cells with the PI3K inhibitor Ly294002 or the ALK5 inhibitor SB431542 attenuated the decreased cell shortening in TGFß1-stimulated cells. Additionally, TGFß-induced apoptosis was significantly reduced by the PI3K inhibitor Ly294002. Administration of a PI3Kγ-specific inhibitor AS605240 abolished the TGFß effect on apoptosis and cell shortening. This was also confirmed in cardiomyocytes from PI3Kγ KO mice. Induction of SMAD binding activity and the TGFß target gene collagen 1 could be blocked by the PI3K inhibitor Ly294002, but not by the specific PI3Kγ inhibitor AS605240. CONCLUSIONS: TGFß1-induced SMAD activation, cardiomyocyte apoptosis, and impaired cell shortening are mediated via both, the ALK5 receptor and PI3K, in adult cardiomyocytes. PI3Kγ specifically contributes to apoptosis induction and impairment of contractile function independent of SMAD signaling.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA