Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Livers ; 3(2): 310-321, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38037613

RESUMEN

Tyrosine kinase inhibitors (TKIs) are increasingly popular drugs used to treat more than a dozen different diseases, including some forms of cancer. Despite having fewer adverse effects than traditional chemotherapies, they are not without risks. Liver injury is a particular concern. Of the FDA-approved TKIs, approximately 40% cause hepatotoxicity. However, little is known about the underlying pathophysiology. The leading hypothesis is that TKIs are converted by cytochrome P450 3A4 (CYP3A4) to reactive metabolites that damage proteins. Indeed, there is strong evidence for this bioactivation of TKIs in in vitro reactions. However, the actual toxic effects are underexplored. Here, we measured the cytotoxicity of several TKIs in primary mouse hepatocytes, HepaRG cells, and HepG2 cells with and without CYP3A4 modulation. To our surprise, the data indicate that CYP3A4 increases resistance to sorafenib and lapatinib hepatotoxicity. The results have implications for the mechanism of toxicity of these drugs in patients and underline the importance of selecting an appropriate experimental model.

2.
Metabolites ; 12(8)2022 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-36005645

RESUMEN

In 2019, synthetic cannabinoids accounted for more than one-third of new drugs of abuse worldwide; however, assessment of associated health risks is not ethical for controlled and often illegal substances, making CD-1 mouse exposure studies the gold standard. Interpretation of those findings then depends on the similarity of mouse and human metabolic pathways. Herein, we report the first comparative analysis of steady-state metabolism of N-(1-adamantyl)-1-(5-pentyl)-1H-indazole-3-carboxamide (5F-APINACA/5F-AKB48) in CD-1 mice and humans using hepatic microsomes. Regardless of species, 5F-APINACA metabolism involved highly efficient sequential adamantyl hydroxylation and oxidative defluorination pathways that competed equally. Secondary adamantyl hydroxylation was less efficient for mice. At low 5F-APINACA concentrations, initial rates were comparable between pathways, but at higher concentrations, adamantyl hydroxylations became less significant due to substrate inhibition likely involving an effector site. For humans, CYP3A4 dominated both metabolic pathways with minor contributions from CYP2C8, 2C19, and 2D6. For CD-1 mice, Cyp3a11 and Cyp2c37, Cyp2c50, and Cyp2c54 contributed equally to adamantyl hydroxylation, but Cyp3a11 was more efficient at oxidative defluorination than Cyp2c members. Taken together, the results of our in vitro steady-state study indicate a high conservation of 5F-APINACA metabolism between CD-1 mice and humans, but deviations can occur due to differences in P450s responsible for the associated reactions.

3.
J Med Chem ; 64(14): 10497-10511, 2021 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-34236185

RESUMEN

The bromodomain and extra terminal (BET) protein family recognizes acetylated lysines within histones and transcription factors using two N-terminal bromodomains, D1 and D2. The protein-protein interactions between BET bromodomains, acetylated histones, and transcription factors are therapeutic targets for BET-related diseases, including inflammatory disease and cancer. Prior work demonstrated that methylated-1,2,3-triazoles are suitable N-acetyl lysine mimetics for BET inhibition. Here we describe a structure-activity relationship study of triazole-based inhibitors that improve affinity, D1 selectivity, and microsomal stability. These outcomes were accomplished by targeting a nonconserved residue, Asp144 and a conserved residue, Met149, on BRD4 D1. The lead inhibitors DW34 and 26 have a BRD4 D1 Kd of 12 and 6.4 nM, respectively. Cellular activity was demonstrated through suppression of c-Myc expression in MM.1S cells and downregulation of IL-8 in TNF-α-stimulated A549 cells. These data indicate that DW34 and 26 are new leads to investigate the anticancer and anti-inflammatory activity of BET proteins.


Asunto(s)
Proteínas de Ciclo Celular/antagonistas & inhibidores , Lisina/farmacología , Factores de Transcripción/antagonistas & inhibidores , Triazoles/farmacología , Células A549 , Proteínas de Ciclo Celular/metabolismo , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Humanos , Lisina/química , Microsomas Hepáticos/química , Microsomas Hepáticos/metabolismo , Estructura Molecular , Relación Estructura-Actividad , Factores de Transcripción/metabolismo , Triazoles/síntesis química , Triazoles/química
4.
Metabolites ; 11(6)2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-34203690

RESUMEN

The 3,5-dimethylisoxazole motif has become a useful and popular acetyl-lysine mimic employed in isoxazole-containing bromodomain and extra-terminal (BET) inhibitors but may introduce the potential for bioactivations into toxic reactive metabolites. As a test, we coupled deep neural models for quinone formation, metabolite structures, and biomolecule reactivity to predict bioactivation pathways for 32 BET inhibitors and validate the bioactivation of select inhibitors experimentally. Based on model predictions, inhibitors were more likely to undergo bioactivation than reported non-bioactivated molecules containing isoxazoles. The model outputs varied with substituents indicating the ability to scale their impact on bioactivation. We selected OXFBD02, OXFBD04, and I-BET151 for more in-depth analysis. OXFBD's bioactivations were evenly split between traditional quinones and novel extended quinone-methides involving the isoxazole yet strongly favored the latter quinones. Subsequent experimental studies confirmed the formation of both types of quinones for OXFBD molecules, yet traditional quinones were the dominant reactive metabolites. Modeled I-BET151 bioactivations led to extended quinone-methides, which were not verified experimentally. The differences in observed and predicted bioactivations reflected the need to improve overall bioactivation scaling. Nevertheless, our coupled modeling approach predicted BET inhibitor bioactivations including novel extended quinone methides, and we experimentally verified those pathways highlighting potential concerns for toxicity in the development of these new drug leads.

5.
Drug Metab Rev ; 53(2): 188-206, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33941024

RESUMEN

As lead optimization efforts have successfully reduced metabolic liabilities due to cytochrome P450 (CYP)-mediated metabolism, there has been an increase in the frequency of involvement of non-CYP enzymes in the metabolism of investigational compounds. Although there have been numerous notable advancements in the characterization of non-CYP enzymes with respect to their localization, reaction mechanisms, species differences and identification of typical substrates, accurate prediction of non-CYP-mediated clearance, with a particular emphasis with the difficulties in accounting for any extrahepatic contributions, remains a challenge. The current manuscript comprehensively summarizes the recent advancements in the prediction of drug metabolism and the in vitro to in vitro extrapolation of clearance for substrates of non-CYP drug metabolizing enzymes.


Asunto(s)
Sistema Enzimático del Citocromo P-450 , Microsomas Hepáticos , Sistema Enzimático del Citocromo P-450/metabolismo , Humanos , Inactivación Metabólica , Tasa de Depuración Metabólica , Microsomas Hepáticos/metabolismo
6.
Drug Metab Rev ; 53(2): 279-284, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33836131

RESUMEN

The International Society for the Study of Xenobiotics (ISSX) New Investigators Group has assembled a global team of emerging scientists to collaboratively compose a series of articles whose topics span the broad field of drug metabolism and will guide both new and established investigators alike. The New Investigator Group Committee members are proud to have provided such an opportunity to many promising early-career scientists from across the globe, and would like to acknowledge each contributor for their efforts.


Asunto(s)
Xenobióticos , Humanos
7.
Toxicol Lett ; 338: 10-20, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33253783

RESUMEN

Meloxicam is a thiazole-containing NSAID that was approved for marketing with favorable clinical outcomes despite being structurally similar to the hepatotoxic sudoxicam. Introduction of a single methyl group on the thiazole results in an overall lower toxic risk, yet the group's impact on P450 isozyme bioactivation is unclear. Through analytical methods, we used inhibitor phenotyping and recombinant P450s to identify contributing P450s, and then measured steady-state kinetics for bioactivation of sudoxicam and meloxicam by the recombinant P450s to determine relative efficiencies. Experiments showed that CYP2C8, 2C19, and 3A4 catalyze sudoxicam bioactivation, and CYP1A2 catalyzes meloxicam bioactivation, indicating that the methyl group not only impacts enzyme affinity for the drugs, but also alters which isozymes catalyze the metabolic pathways. Scaling of relative P450 efficiencies based on average liver concentration revealed that CYP2C8 dominates the sudoxicam bioactivation pathway and CYP2C9 dominates meloxicam detoxification. Dominant P450s were applied for an informatics assessment of electronic health records to identify potential correlations between meloxicam drug-drug interactions and drug-induced liver injury. Overall, our findings provide a cautionary tale on assumed impacts of even simple structural modifications on drug bioactivation while also revealing specific targets for clinical investigations of predictive factors that determine meloxicam-induced idiosyncratic liver injury.


Asunto(s)
Antiinflamatorios no Esteroideos/metabolismo , Citocromo P-450 CYP1A2/metabolismo , Citocromo P-450 CYP2C8/metabolismo , Citocromo P-450 CYP2C9/metabolismo , Meloxicam/metabolismo , Microsomas Hepáticos/enzimología , Tiazinas/metabolismo , Activación Metabólica , Antiinflamatorios no Esteroideos/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Minería de Datos , Aprendizaje Profundo , Interacciones Farmacológicas , Registros Electrónicos de Salud , Femenino , Humanos , Inactivación Metabólica , Cinética , Masculino , Meloxicam/toxicidad , Persona de Mediana Edad , Especificidad por Sustrato , Tiazinas/toxicidad
8.
Molecules ; 25(20)2020 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-33092129

RESUMEN

In 2020, nearly one-third of new drugs on the global market were synthetic cannabinoids including the drug of abuse N-(1-adamantyl)-1-(5-pentyl)-1H-indazole-3-carboxamide (5F-APINACA, 5F-AKB48). Knowledge of 5F-APINACA metabolism provides a critical mechanistic basis to interpret and predict abuser outcomes. Prior qualitative studies identified which metabolic processes occur but not the order and extent of them and often relied on problematic "semi-quantitative" mass spectroscopic (MS) approaches. We capitalized on 5F-APINACA absorbance for quantitation while leveraging MS to characterize metabolite structures for measuring 5F-APINACA steady-state kinetics. We demonstrated the reliability of absorbance and not MS for inferring metabolite levels. Human liver microsomal reactions yielded eight metabolites by MS but only five by absorbance. Subsequent kinetic studies on primary and secondary metabolites revealed highly efficient mono- and dihydroxylation of the adamantyl group and much less efficient oxidative defluorination at the N-pentyl terminus. Based on regiospecificity and kinetics, we constructed pathways for competing and intersecting steps in 5F-APINACA metabolism. Overall efficiency for adamantyl oxidation was 17-fold higher than that for oxidative defluorination, showing significant bias in metabolic flux and subsequent metabolite profile compositions. Lastly, our analytical approach provides a powerful new strategy to more accurately assess metabolic kinetics for other understudied synthetic cannabinoids possessing the indazole chromophore.


Asunto(s)
Adamantano/análogos & derivados , Cannabinoides/química , Indazoles/química , Redes y Vías Metabólicas/efectos de los fármacos , Adamantano/síntesis química , Adamantano/química , Adamantano/farmacología , Cannabinoides/síntesis química , Humanos , Indazoles/síntesis química , Indazoles/farmacología , Cinética , Microsomas Hepáticos/efectos de los fármacos
9.
Toxicology ; 440: 152478, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32437779

RESUMEN

Thiazoles are biologically active aromatic heterocyclic rings occurring frequently in natural products and drugs. These molecules undergo typically harmless elimination; however, a hepatotoxic response can occur due to multistep bioactivation of the thiazole to generate a reactive thioamide. A basis for those differences in outcomes remains unknown. A textbook example is the high hepatotoxicity observed for sudoxicam in contrast to the relative safe use and marketability of meloxicam, which differs in structure from sudoxicam by the addition of a single methyl group. Both drugs undergo bioactivation, but meloxicam exhibits an additional detoxification pathway due to hydroxylation of the methyl group. We hypothesized that thiazole bioactivation efficiency is similar between sudoxicam and meloxicam due to the methyl group being a weak electron donator, and thus, the relevance of bioactivation depends on the competing detoxification pathway. For a rapid analysis, we modeled epoxidation of sudoxicam derivatives to investigate the impact of substituents on thiazole bioactivation. As expected, electron donating groups increased the likelihood for epoxidation with a minimal effect for the methyl group, but model predictions did not extrapolate well among all types of substituents. Through analytical methods, we measured steady-state kinetics for metabolic bioactivation of sudoxicam and meloxicam by human liver microsomes. Sudoxicam bioactivation was 6-fold more efficient than that for meloxicam, yet meloxicam showed a 6-fold higher efficiency of detoxification than bioactivation. Overall, sudoxicam bioactivation was 15-fold more likely than meloxicam considering all metabolic clearance pathways. Kinetic differences likely arise from different enzymes catalyzing respective metabolic pathways based on phenotyping studies. Rather than simply providing an alternative detoxification pathway, the meloxicam methyl group suppressed the bioactivation reaction. These findings indicate the impact of thiazole substituents on bioactivation is more complex than previously thought and likely contributes to the unpredictability of their toxic potential.


Asunto(s)
Meloxicam/metabolismo , Tiazinas/metabolismo , Activación Metabólica , Biotransformación , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Electrones , Compuestos Epoxi/metabolismo , Humanos , Hidroxilación , Técnicas In Vitro , Cinética , Redes y Vías Metabólicas/efectos de los fármacos , Microsomas Hepáticos/metabolismo , Tiazoles/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA