RESUMEN
The HSP70 co-chaperone BAG3 targets unfolded proteins to degradation via chaperone assisted selective autophagy (CASA), thereby playing pivotal roles in the proteostasis of adult cardiomyocytes (CMs). However, the complex functions of BAG3 for regulating autophagy in cardiac disease are not completely understood. Here, we demonstrate that conditional inactivation of Bag3 in murine CMs leads to age-dependent dysregulation of autophagy, associated with progressive cardiomyopathy. Surprisingly, Bag3-deficient CMs show increased canonical and non-canonical autophagic flux in the juvenile period when first signs of cardiac dysfunction appear, but reduced autophagy during later stages of the disease. Juvenile Bag3-deficient CMs are characterized by decreased levels of soluble proteins involved in synchronous contraction of the heart, including the gap junction protein Connexin 43 (CX43). Reiterative administration of chloroquine (CQ), an inhibitor of canonical and non-canonical autophagy, but not inactivation of Atg5, restores normal concentrations of soluble cardiac proteins in juvenile Bag3-deficient CMs without an increase of detergent-insoluble proteins, leading to complete recovery of early-stage cardiac dysfunction in Bag3-deficient mice. We conclude that loss of Bag3 in CMs leads to age-dependent differences in autophagy and cardiac dysfunction. Increased non-canonical autophagic flux in the juvenile period removes soluble proteins involved in cardiac contraction, leading to early-stage cardiomyopathy, which is prevented by reiterative CQ treatment.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Proteínas Reguladoras de la Apoptosis , Autofagia , Cardiomiopatías , Miocitos Cardíacos , Animales , Cardiomiopatías/metabolismo , Cardiomiopatías/patología , Cardiomiopatías/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/deficiencia , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/deficiencia , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Ratones , Miocardio/metabolismo , Miocardio/patología , Cloroquina/farmacología , Ratones NoqueadosRESUMEN
Cardiomyocyte maturation during pre- and postnatal development requires multiple intertwined processes, including a switch in energy generation from glucose utilization in the embryonic heart towards fatty acid oxidation after birth. This is accompanied by a boost in mitochondrial mass to increase capacities for oxidative phosphorylation and ATP generation required for efficient contraction. Whether cardiomyocyte differentiation is paralleled by augmented capacities to deal with reactive oxygen species (ROS), physiological byproducts of the mitochondrial electron transport chain (ETC), is less clear. Here we show that expression of genes and proteins involved in redox homeostasis and protein quality control within mitochondria increases after birth in the mouse and human heart. Using primary embryonic, neonatal and adult mouse cardiomyocytes in vitro we investigated how excessive ROS production induced by mitochondrial dysfunction affects cell survival and stress response at different stages of maturation. Embryonic and neonatal cardiomyocytes largely tolerate inhibition of ETC complex III by antimycin A (AMA) as well as ATP synthase (complex V) by oligomycin but are susceptible to complex I inhibition by rotenone. All three inhibitors alter the intracellular distribution and ultrastructure of mitochondria in neonatal cardiomyocytes. In contrast, adult cardiomyocytes treated with AMA undergo rapid morphological changes and cellular disintegration. At the molecular level embryonic cardiomyocytes activate antioxidative defense mechanisms, the integrated stress response (ISR) and ER stress but not the mitochondrial unfolded protein response upon complex III inhibition. In contrast, adult cardiomyocytes fail to activate the ISR and antioxidative proteins following AMA treatment. In conclusion, our results identified fundamental differences in cell survival and stress response in differentiated compared to immature cardiomyocytes subjected to mitochondrial dysfunction. The high stress tolerance of immature cardiomyocytes might allow outlasting unfavorable intrauterine conditions thereby preventing fetal or perinatal heart disease and may contribute to the regenerative capacity of the embryonic and neonatal mammalian heart.
Asunto(s)
Enfermedades Mitocondriales , Miocitos Cardíacos , Adulto , Ratones , Humanos , Animales , Miocitos Cardíacos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Supervivencia Celular , Complejo III de Transporte de Electrones/metabolismo , Antioxidantes/metabolismo , Adenosina Trifosfato/metabolismo , Enfermedades Mitocondriales/metabolismo , Mamíferos/metabolismoRESUMEN
G-ratio is crucial for understanding the nervous system's health and function as it measures the relative myelin thickness around an axon. However, manual measurement is biased and variable, emphasizing the need for an automated and standardized technique. Although deep learning holds promise, current implementations lack clinical relevance and generalizability. This study aimed to develop an automated pipeline for selecting nerve fibers and calculating relevant g-ratio using quality parameters in optical microscopy. Histological sections from the sciatic nerves of 16 female mice were prepared and stained with either p-phenylenediamine (PPD) or toluidine blue (TB). A custom UNet model was trained on a mix of both types of staining to segment the sections based on 7,694 manually delineated nerve fibers. Post-processing excluded non-relevant nerves. Axon diameter, myelin thickness, and g-ratio were computed from the segmentation results and its reliability was assessed using the intraclass correlation coefficient (ICC). Validation was performed on adjacent cuts of the same nerve. Then, morphometrical analyses of both staining techniques were performed. High agreement with the ground truth was shown by the model, with dice scores of 0.86 (axon) and 0.80 (myelin) and pixel-wise accuracy of 0.98 (axon) and 0.94 (myelin). Good inter-device reliability was observed with ICC at 0.87 (g-ratio) and 0.83 (myelin thickness), and an excellent ICC of 0.99 for axon diameter. Although axon diameter significantly differed from the ground truth (p = 0.006), g-ratio (p = 0.098) and myelin thickness (p = 0.877) showed no significant differences. No statistical differences in morphological parameters (g-ratio, myelin thickness, and axon diameter) were found in adjacent cuts of the same nerve (ANOVA p-values: 0.34, 0.34, and 0.39, respectively). Comparing all animals, staining techniques yielded significant differences in mean g-ratio (PPD: 0.48 ± 0.04, TB: 0.50 ± 0.04), myelin thickness (PPD: 0.83 ± 0.28 µm, TB: 0.60 ± 0.20 µm), and axon diameter (PPD: 1.80 ± 0.63 µm, TB: 1.78 ± 0.63 µm). The proposed pipeline automatically selects relevant nerve fibers for g-ratio calculation in optical microscopy. This provides a reliable measurement method and serves as a potential pre-selection approach for large datasets in the context of healthy tissue. It remains to be demonstrated whether this method is applicable to measure g-ratio related with neurological disorders by comparing healthy and pathological tissue. Additionally, our findings emphasize the need for careful interpretation of inter-staining morphological parameters.
RESUMEN
BACKGROUND: Pain occurs in the majority of patients with late onset Pompe disease (LOPD) and is associated with a reduced quality of life. The aim of this study was to analyse the pain characteristics and its relation to a small nerve fiber involvement in LOPD patients. METHODS: In 35 patients with LOPD under enzyme replacement therapy without clinical signs of polyneuropathy (19 females; 51 ± 15 years), pain characteristics as well as depressive and anxiety symptoms were assessed using the PainDetect questionnaire (PDQ) and the hospital anxiety and depression scale (HADS), respectively. Distal skin biopsies were analysed for intraepidermal nerve fiber density (IENFD) and compared to age- and gender-matched reference data. Skin biopsies from 20 healthy subjects served as controls to assure validity of the morphometric analysis. RESULTS: Pain was reported in 69% of the patients with an average intensity of 4.1 ± 1.1 on the numeric rating scale (NRS; anchors: 0-10). According to PDQ, neuropathic pain was likely in one patient, possible in 29%, and unlikely in 67%. Relevant depression and anxiety symptoms occurred in 31% and 23%, respectively, and correlated with pain intensity. Distal IENFD (3.98 ± 1.95 fibers/mm) was reduced in 57% of the patients. The degree of IENFD reduction did not correlate with the durations of symptoms to ERT or duration of ERT to biopsy. CONCLUSIONS: Pain is a frequent symptom in treated LOPD on ERT, though a screening questionnaire seldom indicated neuropathic pain. The high frequency of small nerve fiber pathology in a treated LOPD cohort was found regardless of the presence of pain or comorbid risk factors for SFN and needs further exploration in terms of clinical context, exact mechanisms and when developing novel therapeutic options for LOPD.
Asunto(s)
Enfermedad del Almacenamiento de Glucógeno Tipo II , Neuralgia , Terapia de Reemplazo Enzimático , Femenino , Enfermedad del Almacenamiento de Glucógeno Tipo II/tratamiento farmacológico , Humanos , Masculino , Dimensión del Dolor , Calidad de VidaRESUMEN
INTRODUCTION: Small fiber neuropathies (SFN) are associated with a reduction in quality of life. In adults, epidermal nerve fiber density (END) analysis is recommended for the diagnosis of SFN. In children, END assessment is not often performed. We analyzed small nerve fiber innervation to elucidate the potential diagnostic role of skin biopsies in young patients with pain. METHODS: Epidermal nerve fiber density and sudomotor neurite density (SND) were assessed in skin biopsies from 26 patients aged 7 to 20 years (15 female patients) with unexplained chronic pain. The results were compared with clinical data. RESULTS: Epidermal nerve fiber density was abnormal in 50% and borderline in 35% of patients. An underlying medical condition was found in 42% of patients, including metabolic, autoimmune, and genetic disorders. DISCUSSION: Reduction of epidermal nerve fibers can be associated with treatable conditions. Therefore, the analysis of END in children with pain may help to uncover a possible cause and guide potential treatment options.
Asunto(s)
Dolor Crónico/diagnóstico , Dolor Crónico/patología , Fibras Nerviosas/patología , Piel/patología , Neuropatía de Fibras Pequeñas/patología , Adolescente , Biopsia , Niño , Epidermis/inervación , Epidermis/patología , Femenino , Humanos , Masculino , Neuralgia/diagnóstico , Neuritas/patología , Dimensión del Dolor , Glándulas Sudoríparas/inervación , Glándulas Sudoríparas/patología , Adulto JovenRESUMEN
Human cold perception and nociception play an important role in persisting pain. However, species differences in the target temperature of thermosensitive ion channels expressed in peripheral nerve endings have fueled discussions about the mechanism of cold nociception in humans. Most frequently implicated thermosensors are members of the transient receptor potential (TRP) ion channel family TRPM8 and TRPA1. Regularly observed, distinct cold pain phenotype groups suggested the existence of interindividually differing molecular bases. In 28 subjects displaying either high or medium sensitivity to local cooling of the skin, the density at epidermal nerve fibers of TRPM8, but not that of TRPA1 expression, correlated significantly with the cold pain threshold. Moreover, reproducible grouping of the subjects, based on high or medium sensitivity to cooling, was reflected in an analogous grouping based on high or low TRPM8 expression at epidermal nerve fibers. The distribution of TRPM8 expression in epidermal nerve fibers provided an explanation for the previously observed (bi)modal distribution of human cold pain thresholds which was reproduced in this study. In the light of current controversies on the role of human TRPA1 ion channels in cold pain perception, the present observations demonstrating a lack of association of TRPA1 channel expression with cold sensitivity-related measures reinforce doubts about involvement of this channel in cold pain in humans. Since TRP inhibitors targeting TRPM8 and TRPA1 are currently entering clinical phases of drug development, the existence of known species differences, in particular in the function of TRPA1, emphasizes the increasing importance of new methods to directly approach the roles of TRPs in humans.
Asunto(s)
Frío , Epidermis/metabolismo , Umbral del Dolor/fisiología , Temperatura Cutánea/fisiología , Canal Catiónico TRPA1/metabolismo , Canales Catiónicos TRPM/metabolismo , Adulto , Femenino , Voluntarios Sanos , Humanos , Masculino , Sensación Térmica/fisiología , Adulto JovenRESUMEN
The architecture of the neurovascular unit (NVU) is controlled by the communication of neurons, glia, and vascular cells. We found that the neuronal guidance cue reelin possesses proangiogenic activities that ensure the communication of endothelial cells (ECs) with the glia to control neuronal migration and the establishment of the blood-brain barrier in the mouse brain. Apolipoprotein E receptor 2 (ApoER2) and Disabled1 (Dab1) expressed in ECs are required for vascularization of the retina and the cerebral cortex. Deletion of Dab1 in ECs leads to a reduced secretion of laminin-α4 and decreased activation of integrin-ß1 in glial cells, which in turn control neuronal migration and barrier properties of the NVU. Thus, reelin signaling in the endothelium is an instructive and integrative cue essential for neuro-glia-vascular communication.