Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
J Neurol ; 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38884790

RESUMEN

BACKGROUND: Gait impairment is a key feature in later stages of Parkinson's disease (PD), which often responds poorly to pharmacological therapies. Neuromodulatory treatment by low-intensity noisy galvanic vestibular stimulation (nGVS) has indicated positive effects on postural instability in PD, which may possibly be conveyed to improvement of dynamic gait dysfunction. OBJECTIVE: To investigate the effects of individually tuned nGVS on normal and cognitively challenged walking in PD patients with mild-to-moderate gait dysfunction. METHODS: Effects of nGVS of varying intensities (0-0.7 mA) on body sway were examined in 32 patients with PD (ON medication state, Hoehn and Yahr: 2.3 ± 0.5), who were standing with eyes closed on a posturographic force plate. Treatment response and optimal nGVS stimulation intensity were determined on an individual patient level. In a second step, the effects of optimal nGVS vs. sham treatment on walking with preferred speed and with a cognitive dual task were investigated by assessment of spatiotemporal gait parameters on a pressure-sensitive gait carpet. RESULTS: Evaluation of individual balance responses yielded that 59% of patients displayed a beneficial balance response to nGVS treatment with an average optimal improvement of 23%. However, optimal nGVS had no effects on gait parameters neither for the normal nor the cognitively challenged walking condition compared to sham stimulation irrespective of the nGVS responder status. CONCLUSIONS: Low-intensity nGVS seems to have differential treatment effects on static postural imbalance and continuous gait dysfunction in PD, which could be explained by a selective modulation of midbrain-thalamic circuits of balance control.

2.
J Parkinsons Dis ; 12(5): 1611-1618, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35491798

RESUMEN

BACKGROUND: Postural instability is a major disabling factor in patients with advanced Parkinson's disease (PD) and often resistant to treatment. Previous studies indicated that imbalance in PD may be reduced by low-intensity noisy galvanic vestibular stimulation (nGVS). OBJECTIVE: To investigate the potential mode of action of this therapeutic effect. In particular, we examined whether nGVS-induced reductions of body sway in PD are compatible with stochastic resonance (SR), a mechanism by which weak sensory noise stimulation can paradoxically enhance sensory information transfer. METHODS: Effects of nGVS of varying intensities (0-0.7 mA) on body sway were examined in 15 patients with PD standing with eye closed on a posturographic force plate. We assumed a bell-shaped response curve with maximal reductions of sway at intermediate nGVS intensities to be indicative of SR. An established SR-curve model was fitted on individual patient outcomes and three experienced human raters had to judge whether responses to nGVS were consistent with the exhibition of SR. RESULTS: nGVS-induced reductions of body sway compatible with SR were found in 10 patients (67%) with optimal improvements of 23±13%. In 7 patients (47%), nGVS-induced sway reductions exceeded the minimally important clinical difference (optimal improvement: 30±10%), indicative of strong SR. This beneficial effect was more likely in patients with advanced PD (R = 0.45; p = 0.045). CONCLUSIONS: At least half of the assessed patients showed robust improvements in postural balance compatible with SR when treated with low-intensity nGVS. In particular, patients with more advanced disease stages and imbalance may benefit from the non-invasive and well-tolerated treatment with nGVS.


Asunto(s)
Enfermedad de Parkinson , Vestíbulo del Laberinto , Estimulación Eléctrica , Humanos , Ruido/efectos adversos , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/terapia , Equilibrio Postural/fisiología , Vestíbulo del Laberinto/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA