Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Nat Commun ; 15(1): 3056, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38632260

RESUMEN

Microbial activity in drylands tends to be confined to rare and short periods of rain. Rapid growth should be key to the maintenance of ecosystem processes in such narrow activity windows, if desiccation and rehydration cause widespread cell death due to osmotic stress. Here, simulating rain with 2H2O followed by single-cell NanoSIMS, we show that biocrust microbial communities in the Negev Desert are characterized by limited productivity, with median replication times of 6 to 19 days and restricted number of days allowing growth. Genome-resolved metatranscriptomics reveals that nearly all microbial populations resuscitate within minutes after simulated rain, independent of taxonomy, and invest their activity into repair and energy generation. Together, our data reveal a community that makes optimal use of short activity phases by fast and universal resuscitation enabling the maintenance of key ecosystem functions. We conclude that desert biocrust communities are highly adapted to surviving rapid changes in soil moisture and solute concentrations, resulting in high persistence that balances limited productivity.


Asunto(s)
Ecosistema , Microbiota , Clima Desértico , Microbiología del Suelo , Lluvia , Suelo
2.
Sci Adv ; 10(8): eadk6295, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38394199

RESUMEN

Soil microorganisms control the fate of soil organic carbon. Warming may accelerate their activities putting large carbon stocks at risk of decomposition. Existing knowledge about microbial responses to warming is based on community-level measurements, leaving the underlying mechanisms unexplored and hindering predictions. In a long-term soil warming experiment in a Subarctic grassland, we investigated how active populations of bacteria and archaea responded to elevated soil temperatures (+6°C) and the influence of plant roots, by measuring taxon-specific growth rates using quantitative stable isotope probing and 18O water vapor equilibration. Contrary to prior assumptions, increased community growth was associated with a greater number of active bacterial taxa rather than generally faster-growing populations. We also found that root presence enhanced bacterial growth at ambient temperatures but not at elevated temperatures, indicating a shift in plant-microbe interactions. Our results, thus, reveal a mechanism of how soil bacteria respond to warming that cannot be inferred from community-level measurements.


Asunto(s)
Carbono , Suelo , Microbiología del Suelo , Bacterias , Archaea
3.
Nat Commun ; 14(1): 5895, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37736743

RESUMEN

Climate change increases the frequency and intensity of drought events, affecting soil functions including carbon sequestration and nutrient cycling, which are driven by growing microorganisms. Yet we know little about microbial responses to drought due to methodological limitations. Here, we estimate microbial growth rates in montane grassland soils exposed to ambient conditions, drought, and potential future climate conditions (i.e., soils exposed to 6 years of elevated temperatures and elevated CO2 levels). For this purpose, we combined 18O-water vapor equilibration with quantitative stable isotope probing (termed 'vapor-qSIP') to measure taxon-specific microbial growth in dry soils. In our experiments, drought caused >90% of bacterial and archaeal taxa to stop dividing and reduced the growth rates of persisting ones. Under drought, growing taxa accounted for only 4% of the total community as compared to 35% in the controls. Drought-tolerant communities were dominated by specialized members of the Actinobacteriota, particularly the genus Streptomyces. Six years of pre-exposure to future climate conditions (3 °C warming and + 300 ppm atmospheric CO2) alleviated drought effects on microbial growth, through more drought-tolerant taxa across major phyla, accounting for 9% of the total community. Our results provide insights into the response of active microbes to drought today and in a future climate, and highlight the importance of studying drought in combination with future climate conditions to capture interactive effects and improve predictions of future soil-climate feedbacks.


Asunto(s)
Dióxido de Carbono , Sequías , Archaea , Secuestro de Carbono , Suelo
4.
Biogeochemistry ; 164(3): 521-535, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37475883

RESUMEN

In temperate, boreal and arctic soil systems, microbial biomass often increases during winter and decreases again in spring. This build-up and release of microbial carbon could potentially lead to a stabilization of soil carbon during winter times. Whether this increase is caused by changes in microbial physiology, in community composition, or by changed substrate allocation within microbes or communities is unclear. In a laboratory incubation study, we looked into microbial respiration and growth, as well as microbial glucose uptake and carbon resource partitioning in response to cooling. Soils taken from a temperate beech forest and temperate cropland system in October 2020, were cooled down from field temperature of 11 °C to 1 °C. We determined microbial growth using 18O-incorporation into DNA after the first two days of cooling and after an acclimation phase of 9 days; in addition, we traced 13C-labelled glucose into microbial biomass, CO2 respired from the soil, and into microbial phospholipid fatty acids (PLFAs). Our results show that the studied soil microbial communities responded strongly to soil cooling. The 18O data showed that growth and cell division were reduced when soils were cooled from 11 to 1 °C. Total respiration was also reduced but glucose uptake and glucose-derived respiration were unchanged. We found that microbes increased the investment of glucose-derived carbon in unsaturated phospholipid fatty acids at colder temperatures. Since unsaturated fatty acids retain fluidity at lower temperatures compared to saturated fatty acids, this could be interpreted as a precaution to reduced temperatures. Together with the maintained glucose uptake and reduced cell division, our findings show an immediate response of soil microorganisms to soil cooling, potentially to prepare for freezing events. The discrepancy between C uptake and cell division could explain previously observed high microbial biomass carbon in temperate soils in winter. Supplementary Information: The online version contains supplementary material available at 10.1007/s10533-023-01050-x.

5.
Glob Chang Biol ; 26(9): 5333-5341, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32472728

RESUMEN

Soil microbial physiology controls large fluxes of C to the atmosphere, thus, improving our ability to accurately quantify microbial physiology in soil is essential. However, current methods to determine microbial C metabolism require liquid water addition, which makes it practically impossible to measure microbial physiology in dry soil samples without stimulating microbial growth and respiration (namely, the "Birch effect"). We developed a new method based on in vivo 18 O-water vapor equilibration to minimize soil rewetting effects. This method allows the isotopic labeling of soil water without direct liquid water addition. This was compared to the main current method (direct 18 O-liquid water addition) in moist and air-dry soils. We determined the time kinetics and calculated the average 18 O enrichment of soil water over incubation time, which is necessary to calculate microbial growth from 18 O incorporation in genomic DNA. We tested isotopic equilibration patterns in three natural and six artificially constructed soils covering a wide range of soil texture and soil organic matter content. We then measured microbial growth, respiration and carbon use efficiency (CUE) in three natural soils (either air-dry or moist). The proposed 18 O-vapor equilibration method provided similar results as the current method of liquid 18 O-water addition when used for moist soils. However, when applied to air-dry soils the liquid 18 O-water addition method overestimated growth by up to 250%, respiration by up to 500%, and underestimated CUE by up to 40%. We finally describe the new insights into biogeochemical cycling of C that the new method can help uncover, and we consider a range of questions regarding microbial physiology and its response to global change that can now be addressed.


Asunto(s)
Carbono , Suelo , Microbiología del Suelo , Vapor , Agua/análisis
6.
Nat Ecol Evol ; 2(10): 1588-1596, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30201963

RESUMEN

In most terrestrial ecosystems, plant growth is limited by nitrogen and phosphorus. Adding either nutrient to soil usually affects primary production, but their effects can be positive or negative. Here we provide a general stoichiometric framework for interpreting these contrasting effects. First, we identify nitrogen and phosphorus limitations on plants and soil microorganisms using their respective nitrogen to phosphorus critical ratios. Second, we use these ratios to show how soil microorganisms mediate the response of primary production to limiting and non-limiting nutrient addition along a wide gradient of soil nutrient availability. Using a meta-analysis of 51 factorial nitrogen-phosphorus fertilization experiments conducted across multiple ecosystems, we demonstrate that the response of primary production to nitrogen and phosphorus additions is accurately predicted by our stoichiometric framework. The only pattern that could not be predicted by our original framework suggests that nitrogen has not only a structural function in growing organisms, but also a key role in promoting plant and microbial nutrient acquisition. We conclude that this stoichiometric framework offers the most parsimonious way to interpret contrasting and, until now, unresolved responses of primary production to nutrient addition in terrestrial ecosystems.


Asunto(s)
Ecosistema , Nitrógeno/metabolismo , Fósforo/metabolismo , Desarrollo de la Planta/efectos de los fármacos , Microbiología del Suelo , Suelo/química , Modelos Biológicos , Nutrientes/metabolismo
7.
Glob Chang Biol ; 24(8): 3401-3415, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29774972

RESUMEN

Climate change in Arctic ecosystems fosters permafrost thaw and makes massive amounts of ancient soil organic carbon (OC) available to microbial breakdown. However, fractions of the organic matter (OM) may be protected from rapid decomposition by their association with minerals. Little is known about the effects of mineral-organic associations (MOA) on the microbial accessibility of OM in permafrost soils and it is not clear which factors control its temperature sensitivity. In order to investigate if and how permafrost soil OC turnover is affected by mineral controls, the heavy fraction (HF) representing mostly MOA was obtained by density fractionation from 27 permafrost soil profiles of the Siberian Arctic. In parallel laboratory incubations, the unfractionated soils (bulk) and their HF were comparatively incubated for 175 days at 5 and 15°C. The HF was equivalent to 70 ± 9% of the bulk CO2 respiration as compared to a share of 63 ± 1% of bulk OC that was stored in the HF. Significant reduction of OC mineralization was found in all treatments with increasing OC content of the HF (HF-OC), clay-size minerals and Fe or Al oxyhydroxides. Temperature sensitivity (Q10) decreased with increasing soil depth from 2.4 to 1.4 in the bulk soil and from 2.9 to 1.5 in the HF. A concurrent increase in the metal-to-HF-OC ratios with soil depth suggests a stronger bonding of OM to minerals in the subsoil. There, the younger 14 C signature in CO2 than that of the OC indicates a preferential decomposition of the more recent OM and the existence of a MOA fraction with limited access of OM to decomposers. These results indicate strong mineral controls on the decomposability of OM after permafrost thaw and on its temperature sensitivity. Thus, we here provide evidence that OM temperature sensitivity can be attenuated by MOA in permafrost soils.


Asunto(s)
Carbono/análisis , Minerales/análisis , Hielos Perennes , Suelo/química , Temperatura , Regiones Árticas , Cambio Climático , Siberia
8.
Sci Adv ; 3(5): e1602781, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28508070

RESUMEN

Predicted changes in the intensity and frequency of climate extremes urge a better mechanistic understanding of the stress response of microbially mediated carbon (C) and nutrient cycling processes. We analyzed the resistance and resilience of microbial C, nitrogen (N), and phosphorus (P) cycling processes and microbial community composition in decomposing plant litter to transient, but severe, temperature disturbances, namely, freeze-thaw and heat. Disturbances led temporarily to a more rapid cycling of C and N but caused a down-regulation of P cycling. In contrast to the fast recovery of the initially stimulated C and N processes, we found a slow recovery of P mineralization rates, which was not accompanied by significant changes in community composition. The functional and structural responses to the two distinct temperature disturbances were markedly similar, suggesting that direct negative physical effects and costs associated with the stress response were comparable. Moreover, the stress response of extracellular enzyme activities, but not that of intracellular microbial processes (for example, respiration or N mineralization), was dependent on the nutrient content of the resource through its effect on microbial physiology and community composition. Our laboratory study provides novel insights into the mechanisms of microbial functional stress responses that can serve as a basis for field studies and, in particular, illustrates the need for a closer integration of microbial C-N-P interactions into climate extremes research.

9.
Sci Rep ; 6: 25607, 2016 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-27157964

RESUMEN

Arctic ecosystems are warming rapidly, which is expected to promote soil organic matter (SOM) decomposition. In addition to the direct warming effect, decomposition can also be indirectly stimulated via increased plant productivity and plant-soil C allocation, and this so called "priming effect" might significantly alter the ecosystem C balance. In this study, we provide first mechanistic insights into the susceptibility of SOM decomposition in arctic permafrost soils to priming. By comparing 119 soils from four locations across the Siberian Arctic that cover all horizons of active layer and upper permafrost, we found that an increased availability of plant-derived organic C particularly stimulated decomposition in subsoil horizons where most of the arctic soil carbon is located. Considering the 1,035 Pg of arctic soil carbon, such an additional stimulation of decomposition beyond the direct temperature effect can accelerate net ecosystem C losses, and amplify the positive feedback to global warming.

10.
Soil Biol Biochem ; 103: 300-307, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28042178

RESUMEN

Rising temperatures enhance microbial decomposition of soil organic matter (SOM) and thereby increase the soil CO2 efflux. Elevated decomposition rates might differently affect distinct SOM pools, depending on their stability and accessibility. Soil fractions derived from density fractionation have been suggested to represent SOM pools with different turnover times and stability against microbial decomposition. To investigate the effect of soil warming on functionally different soil organic matter pools, we here investigated the chemical and isotopic composition of bulk soil and three density fractions (free particulate organic matter, fPOM; occluded particulate organic matter, oPOM; and mineral associated organic matter, MaOM) of a C-rich soil from a long-term warming experiment in a spruce forest in the Austrian Alps. At the time of sampling, the soil in this experiment had been warmed during the snow-free period for seven consecutive years. During that time no thermal adaptation of the microbial community could be identified and CO2 release from the soil continued to be elevated by the warming treatment. Our results, which included organic carbon content, total nitrogen content, δ13C, Δ14C, δ15N and the chemical composition, identified by pyrolysis-GC/MS, showed no significant differences in bulk soil between warming treatment and control. Surprisingly, the differences in the three density fractions were mostly small and the direction of warming induced change was variable with fraction and soil depth. Warming led to reduced N content in topsoil oPOM and subsoil fPOM and to reduced relative abundance of N-bearing compounds in subsoil MaOM. Further, warming increased the δ13C of MaOM at both sampling depths, reduced the relative abundance of carbohydrates while it increased the relative abundance of lignins in subsoil oPOM. As the size of the functionally different SOM pools did not significantly change, we assume that the few and small modifications in SOM chemistry result from an interplay of enhanced microbial decomposition of SOM and increased root litter input in the warmed plots. Overall, stable functional SOM pool sizes indicate that soil warming had similarly affected easily decomposable and stabilized SOM of this C-rich forest soil.

11.
Global Biogeochem Cycles ; 29(5): 567-582, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-26693204

RESUMEN

Soil N availability is constrained by the breakdown of N-containing polymers such as proteins to oligopeptides and amino acids that can be taken up by plants and microorganisms. Excess N is released from microbial cells as ammonium (N mineralization), which in turn can serve as substrate for nitrification. According to stoichiometric theory, N mineralization and nitrification are expected to increase in relation to protein depolymerization with decreasing N limitation, and thus from higher to lower latitudes and from topsoils to subsoils. To test these hypotheses, we compared gross rates of protein depolymerization, N mineralization and nitrification (determined using 15N pool dilution assays) in organic topsoil, mineral topsoil, and mineral subsoil of seven ecosystems along a latitudinal transect in western Siberia, from tundra (67°N) to steppe (54°N). The investigated ecosystems differed strongly in N transformation rates, with highest protein depolymerization and N mineralization rates in middle and southern taiga. All N transformation rates decreased with soil depth following the decrease in organic matter content. Related to protein depolymerization, N mineralization and nitrification were significantly higher in mineral than in organic horizons, supporting a decrease in microbial N limitation with depth. In contrast, we did not find indications for a decrease in microbial N limitation from arctic to temperate ecosystems along the transect. Our findings thus challenge the perception of ubiquitous N limitation at high latitudes, but suggest a transition from N to C limitation of microorganisms with soil depth, even in high-latitude systems such as tundra and boreal forest. KEY POINTS: We compared soil N dynamics of seven ecosystems along a latitudinal transectShifts in N dynamics suggest a decrease in microbial N limitation with depthWe found no decrease in microbial N limitation from arctic to temperate zones.

12.
Glob Chang Biol ; 21(11): 4265-77, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26046333

RESUMEN

Thermal adaptations of soil microorganisms could mitigate or facilitate global warming effects on soil organic matter (SOM) decomposition and soil CO2 efflux. We incubated soil from warmed and control subplots of a forest soil warming experiment to assess whether 9 years of soil warming affected the rates and the temperature sensitivity of the soil CO2 efflux, extracellular enzyme activities, microbial efficiency, and gross N mineralization. Mineral soil (0-10 cm depth) was incubated at temperatures ranging from 3 to 23 °C. No adaptations to long-term warming were observed regarding the heterotrophic soil CO2 efflux (R10 warmed: 2.31 ± 0.15 µmol m(-2)  s(-1) , control: 2.34 ± 0.29 µmol m(-2)  s(-1) ; Q10 warmed: 2.45 ± 0.06, control: 2.45 ± 0.04). Potential enzyme activities increased with incubation temperature, but the temperature sensitivity of the enzymes did not differ between the warmed and the control soils. The ratio of C : N acquiring enzyme activities was significantly higher in the warmed soil. Microbial biomass-specific respiration rates increased with incubation temperature, but the rates and the temperature sensitivity (Q10 warmed: 2.54 ± 0.23, control 2.75 ± 0.17) did not differ between warmed and control soils. Microbial substrate use efficiency (SUE) declined with increasing incubation temperature in both, warmed and control, soils. SUE and its temperature sensitivity (Q10 warmed: 0.84 ± 0.03, control: 0.88 ± 0.01) did not differ between warmed and control soils either. Gross N mineralization was invariant to incubation temperature and was not affected by long-term soil warming. Our results indicate that thermal adaptations of the microbial decomposer community are unlikely to occur in C-rich calcareous temperate forest soils.


Asunto(s)
Dióxido de Carbono/metabolismo , Calentamiento Global , Nitrógeno/metabolismo , Microbiología del Suelo , Suelo/química , Aclimatación , Austria , Bosques , Estaciones del Año
13.
Soil Biol Biochem ; 83: 106-115, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25859057

RESUMEN

Soil horizons below 30 cm depth contain about 60% of the organic carbon stored in soils. Although insight into the physical and chemical stabilization of soil organic matter (SOM) and into microbial community composition in these horizons is being gained, information on microbial functions of subsoil microbial communities and on associated microbially-mediated processes remains sparse. To identify possible controls on enzyme patterns, we correlated enzyme patterns with biotic and abiotic soil parameters, as well as with microbial community composition, estimated using phospholipid fatty acid profiles. Enzyme patterns (i.e. distance-matrixes calculated from these enzyme activities) were calculated from the activities of six extracellular enzymes (cellobiohydrolase, leucine-amino-peptidase, N-acetylglucosaminidase, chitotriosidase, phosphatase and phenoloxidase), which had been measured in soil samples from organic topsoil horizons, mineral topsoil horizons, and mineral subsoil horizons from seven ecosystems along a 1500 km latitudinal transect in Western Siberia. We found that hydrolytic enzyme activities decreased rapidly with depth, whereas oxidative enzyme activities in mineral horizons were as high as, or higher than in organic topsoil horizons. Enzyme patterns varied more strongly between ecosystems in mineral subsoil horizons than in organic topsoils. The enzyme patterns in topsoil horizons were correlated with SOM content (i.e., C and N content) and microbial community composition. In contrast, the enzyme patterns in mineral subsoil horizons were related to water content, soil pH and microbial community composition. The lack of correlation between enzyme patterns and SOM quantity in the mineral subsoils suggests that SOM chemistry, spatial separation or physical stabilization of SOM rather than SOM content might determine substrate availability for enzymatic breakdown. The correlation of microbial community composition and enzyme patterns in all horizons, suggests that microbial community composition shapes enzyme patterns and might act as a modifier for the usual dependency of decomposition rates on SOM content or C/N ratios.

14.
New Phytol ; 205(1): 137-46, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25195521

RESUMEN

The proportion of carbon allocated to wood production is an important determinant of the carbon sink strength of global forest ecosystems. Understanding the mechanisms controlling wood production and its responses to environmental drivers is essential for parameterization of global vegetation models and to accurately predict future responses of tropical forests in terms of carbon sequestration. Here, we synthesize data from 105 pantropical old-growth rainforests to investigate environmental controls on the partitioning of net primary production to wood production (%WP) using structural equation modeling. Our results reveal that %WP is governed by two independent pathways of direct and indirect environmental controls. While temperature and soil phosphorus availability indirectly affected %WP via increasing productivity, precipitation and dry season length both directly increased %WP via tradeoffs along the plant economics spectrum. We provide new insights into the mechanisms driving %WP, allowing us to conclude that projected climate change could enhance %WP in less productive tropical forests, thus increasing carbon sequestration in montane forests, but adversely affecting lowland forests.


Asunto(s)
Carbono/metabolismo , Bosque Lluvioso , Clima Tropical , Geografía , Modelos Teóricos , Hojas de la Planta/fisiología , Lluvia , Análisis de Regresión , Estaciones del Año , Temperatura , Incertidumbre , Madera/crecimiento & desarrollo
15.
Front Microbiol ; 5: 541, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25360132

RESUMEN

Permafrost-affected soils in the Northern latitudes store huge amounts of organic carbon (OC) that is prone to microbial degradation and subsequent release of greenhouse gasses to the atmosphere. In Greenland, the consequences of permafrost thaw have only recently been addressed, and predictions on its impact on the carbon budget are thus still highly uncertain. However, the fate of OC is not only determined by abiotic factors, but closely tied to microbial activity. We investigated eight soil profiles in northeast Greenland comprising two sites with typical tundra vegetation and one wet fen site. We assessed microbial community structure and diversity (SSU rRNA gene tag sequencing, quantification of bacteria, archaea and fungi), and measured hydrolytic and oxidative enzyme activities. Sampling site and thus abiotic factors had a significant impact on microbial community structure, diversity and activity, the wet fen site exhibiting higher potential enzyme activities and presumably being a hot spot for anaerobic degradation processes such as fermentation and methanogenesis. Lowest fungal to bacterial ratios were found in topsoils that had been relocated by cryoturbation ("buried topsoils"), resulting from a decrease in fungal abundance compared to recent ("unburied") topsoils. Actinobacteria (in particular Intrasporangiaceae) accounted for a major fraction of the microbial community in buried topsoils, but were only of minor abundance in all other soil horizons. It was indicated that the distribution pattern of Actinobacteria and a variety of other bacterial classes was related to the activity of phenol oxidases and peroxidases supporting the hypothesis that bacteria might resume the role of fungi in oxidative enzyme production and degradation of phenolic and other complex substrates in these soils. Our study sheds light on the highly diverse, but poorly-studied communities in permafrost-affected soils in Greenland and their role in OC degradation.

16.
Soil Biol Biochem ; 75(100): 143-151, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25089062

RESUMEN

Rising temperatures in the Arctic can affect soil organic matter (SOM) decomposition directly and indirectly, by increasing plant primary production and thus the allocation of plant-derived organic compounds into the soil. Such compounds, for example root exudates or decaying fine roots, are easily available for microorganisms, and can alter the decomposition of older SOM ("priming effect"). We here report on a SOM priming experiment in the active layer of a permafrost soil from the central Siberian Arctic, comparing responses of organic topsoil, mineral subsoil, and cryoturbated subsoil material (i.e., poorly decomposed topsoil material subducted into the subsoil by freeze-thaw processes) to additions of 13C-labeled glucose, cellulose, a mixture of amino acids, and protein (added at levels corresponding to approximately 1% of soil organic carbon). SOM decomposition in the topsoil was barely affected by higher availability of organic compounds, whereas SOM decomposition in both subsoil horizons responded strongly. In the mineral subsoil, SOM decomposition increased by a factor of two to three after any substrate addition (glucose, cellulose, amino acids, protein), suggesting that the microbial decomposer community was limited in energy to break down more complex components of SOM. In the cryoturbated horizon, SOM decomposition increased by a factor of two after addition of amino acids or protein, but was not significantly affected by glucose or cellulose, indicating nitrogen rather than energy limitation. Since the stimulation of SOM decomposition in cryoturbated material was not connected to microbial growth or to a change in microbial community composition, the additional nitrogen was likely invested in the production of extracellular enzymes required for SOM decomposition. Our findings provide a first mechanistic understanding of priming in permafrost soils and suggest that an increase in the availability of organic carbon or nitrogen, e.g., by increased plant productivity, can change the decomposition of SOM stored in deeper layers of permafrost soils, with possible repercussions on the global climate.

17.
Nat Commun ; 5: 3694, 2014 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-24739236

RESUMEN

Microbial nitrogen use efficiency (NUE) describes the partitioning of organic N taken up between growth and the release of inorganic N to the environment (that is, N mineralization), and is thus central to our understanding of N cycling. Here we report empirical evidence that microbial decomposer communities in soil and plant litter regulate their NUE. We find that microbes retain most immobilized organic N (high NUE), when they are N limited, resulting in low N mineralization. However, when the metabolic control of microbial decomposers switches from N to C limitation, they release an increasing fraction of organic N as ammonium (low NUE). We conclude that the regulation of NUE is an essential strategy of microbial communities to cope with resource imbalances, independent of the regulation of microbial carbon use efficiency, with significant effects on terrestrial N cycling.


Asunto(s)
Carbono/análisis , Microbiota/fisiología , Ciclo del Nitrógeno/fisiología , Microbiología del Suelo , Suelo/química , Compuestos de Amonio/metabolismo , Redes y Vías Metabólicas/fisiología
18.
PLoS One ; 9(4): e94076, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24705618

RESUMEN

Enzyme-mediated decomposition of soil organic matter (SOM) is controlled, amongst other factors, by organic matter properties and by the microbial decomposer community present. Since microbial community composition and SOM properties are often interrelated and both change with soil depth, the drivers of enzymatic decomposition are hard to dissect. We investigated soils from three regions in the Siberian Arctic, where carbon rich topsoil material has been incorporated into the subsoil (cryoturbation). We took advantage of this subduction to test if SOM properties shape microbial community composition, and to identify controls of both on enzyme activities. We found that microbial community composition (estimated by phospholipid fatty acid analysis), was similar in cryoturbated material and in surrounding subsoil, although carbon and nitrogen contents were similar in cryoturbated material and topsoils. This suggests that the microbial community in cryoturbated material was not well adapted to SOM properties. We also measured three potential enzyme activities (cellobiohydrolase, leucine-amino-peptidase and phenoloxidase) and used structural equation models (SEMs) to identify direct and indirect drivers of the three enzyme activities. The models included microbial community composition, carbon and nitrogen contents, clay content, water content, and pH. Models for regular horizons, excluding cryoturbated material, showed that all enzyme activities were mainly controlled by carbon or nitrogen. Microbial community composition had no effect. In contrast, models for cryoturbated material showed that enzyme activities were also related to microbial community composition. The additional control of microbial community composition could have restrained enzyme activities and furthermore decomposition in general. The functional decoupling of SOM properties and microbial community composition might thus be one of the reasons for low decomposition rates and the persistence of 400 Gt carbon stored in cryoturbated material.


Asunto(s)
Microbiota , Microbiología del Suelo , Suelo/química , Regiones Árticas , Carbono/metabolismo , Activación Enzimática , Enzimas/metabolismo , Geografía , Hidrólisis , Nitrógeno/metabolismo , Siberia
19.
ISME J ; 8(4): 841-53, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24335828

RESUMEN

Cryoturbation, the burial of topsoil material into deeper soil horizons by repeated freeze-thaw events, is an important storage mechanism for soil organic matter (SOM) in permafrost-affected soils. Besides abiotic conditions, microbial community structure and the accessibility of SOM to the decomposer community are hypothesized to control SOM decomposition and thus have a crucial role in SOM accumulation in buried soils. We surveyed the microbial community structure in cryoturbated soils from nine soil profiles in the northeastern Siberian tundra using high-throughput sequencing and quantification of bacterial, archaeal and fungal marker genes. We found that bacterial abundances in buried topsoils were as high as in unburied topsoils. In contrast, fungal abundances decreased with depth and were significantly lower in buried than in unburied topsoils resulting in remarkably low fungal to bacterial ratios in buried topsoils. Fungal community profiling revealed an associated decrease in presumably ectomycorrhizal (ECM) fungi. The abiotic conditions (low to subzero temperatures, anoxia) and the reduced abundance of fungi likely provide a niche for bacterial, facultative anaerobic decomposers of SOM such as members of the Actinobacteria, which were found in significantly higher relative abundances in buried than in unburied topsoils. Our study expands the knowledge on the microbial community structure in soils of Northern latitude permafrost regions, and attributes the delayed decomposition of SOM in buried soils to specific microbial taxa, and particularly to a decrease in abundance and activity of ECM fungi, and to the extent to which bacterial decomposers are able to act as their functional substitutes.


Asunto(s)
Archaea/fisiología , Fenómenos Fisiológicos Bacterianos , Biodiversidad , Ecosistema , Hongos/fisiología , Microbiología del Suelo , Archaea/clasificación , Archaea/genética , Bacterias/clasificación , Bacterias/genética , ADN Espaciador Ribosómico/genética , Enzimas/metabolismo , Hongos/clasificación , Hongos/genética , Genes de ARNr/genética , Siberia , Suelo/química
20.
Soil Biol Biochem ; 67(100): 85-93, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24302785

RESUMEN

Turbic Cryosols (permafrost soils characterized by cryoturbation, i.e., by mixing of soil layers due to freezing and thawing) are widespread across the Arctic, and contain large amounts of poorly decomposed organic material buried in the subsoil. This cryoturbated organic matter exhibits retarded decomposition compared to organic material in the topsoil. Since soil organic matter (SOM) decomposition is known to be tightly linked to N availability, we investigated N transformation rates in different soil horizons of three tundra sites in north-eastern Siberia and Greenland. We measured gross rates of protein depolymerization, N mineralization (ammonification) and nitrification, as well as microbial uptake of amino acids and NH4+ using an array of 15N pool dilution approaches. We found that all sites and horizons were characterized by low N availability, as indicated by low N mineralization compared to protein depolymerization rates (with gross N mineralization accounting on average for 14% of gross protein depolymerization). The proportion of organic N mineralized was significantly higher at the Greenland than at the Siberian sites, suggesting differences in N limitation. The proportion of organic N mineralized, however, did not differ significantly between soil horizons, pointing to a similar N demand of the microbial community of each horizon. In contrast, absolute N transformation rates were significantly lower in cryoturbated than in organic horizons, with cryoturbated horizons reaching not more than 32% of the transformation rates in organic horizons. Our results thus indicate a deceleration of the entire N cycle in cryoturbated soil horizons, especially strongly reduced rates of protein depolymerization (16% of organic horizons) which is considered the rate-limiting step in soil N cycling.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA