Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Nat Neurosci ; 27(3): 409-420, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38366144

RESUMEN

Neurological symptoms, including cognitive impairment and fatigue, can occur in both the acute infection phase of coronavirus disease 2019 (COVID-19) and at later stages, yet the mechanisms that contribute to this remain unclear. Here we profiled single-nucleus transcriptomes and proteomes of brainstem tissue from deceased individuals at various stages of COVID-19. We detected an inflammatory type I interferon response in acute COVID-19 cases, which resolves in the late disease phase. Integrating single-nucleus RNA sequencing and spatial transcriptomics, we could localize two patterns of reaction to severe systemic inflammation, one neuronal with a direct focus on cranial nerve nuclei and a separate diffuse pattern affecting the whole brainstem. The latter reflects a bystander effect of the respiratory infection that spreads throughout the vascular unit and alters the transcriptional state of mainly oligodendrocytes, microglia and astrocytes, while alterations of the brainstem nuclei could reflect the connection of the immune system and the central nervous system via, for example, the vagus nerve. Our results indicate that even without persistence of severe acute respiratory syndrome coronavirus 2 in the central nervous system, local immune reactions are prevailing, potentially causing functional disturbances that contribute to neurological complications of COVID-19.


Asunto(s)
COVID-19 , Humanos , COVID-19/genética , Proteómica , Tronco Encefálico , Cerebelo , Perfilación de la Expresión Génica
2.
Nat Neurosci ; 26(10): 1701-1712, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37749256

RESUMEN

Interleukin-12 (IL-12) is a potent driver of type 1 immunity. Paradoxically, in autoimmune conditions, including of the CNS, IL-12 reduces inflammation. The underlying mechanism behind these opposing properties and the involved cellular players remain elusive. Here we map IL-12 receptor (IL-12R) expression to NK and T cells as well as neurons and oligodendrocytes. Conditionally ablating the IL-12R across these cell types in adult mice and assessing their susceptibility to experimental autoimmune encephalomyelitis revealed that the neuroprotective role of IL-12 is mediated by neuroectoderm-derived cells, specifically neurons, and not immune cells. In human brain tissue from donors with multiple sclerosis, we observe an IL-12R distribution comparable to mice, suggesting similar mechanisms in mice and humans. Combining flow cytometry, bulk and single-nucleus RNA sequencing, we reveal an IL-12-induced neuroprotective tissue adaption preventing early neurodegeneration and sustaining trophic factor release during neuroinflammation, thereby maintaining CNS integrity in mice.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Interleucina-12 , Neuroprotección , Adulto , Animales , Humanos , Ratones , Sistema Nervioso Central , Ratones Endogámicos C57BL , Enfermedades Neuroinflamatorias , Neuronas/metabolismo
3.
Commun Biol ; 6(1): 40, 2023 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-36639529

RESUMEN

Astrocytes are resident glial cells of the central nervous system (CNS) that play complex and heterogeneous roles in brain development, homeostasis and disease. Since their vast involvement in health and disease is becoming increasingly recognized, suitable and reliable tools for studying these cells in vivo and in vitro are of utmost importance. One of the key challenges hereby is to adequately mimic their context-dependent in vivo phenotypes and functions in vitro. To better understand the spectrum of astrocytic variations in defined settings we performed a side-by-side-comparison of murine embryonic stem cell (ESC)-derived astrocytes as well as primary neonatal and adult astrocytes, revealing major differences on a functional and transcriptomic level, specifically on proliferation, migration, calcium signaling and cilium activity. Our results highlight the need to carefully consider the choice of astrocyte origin and phenotype with respect to age, isolation and culture protocols based on the respective biological question.


Asunto(s)
Astrocitos , Neuroglía , Animales , Ratones , Astrocitos/fisiología , Diferenciación Celular , Sistema Nervioso Central , Células Madre Embrionarias
4.
J Cereb Blood Flow Metab ; 39(10): 2022-2034, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-29768943

RESUMEN

The majority of stroke patients develop post-stroke fatigue, a symptom which impairs motivation and diminishes the success of rehabilitative interventions. We show that large cortical strokes acutely reduce activity levels in rats for 1-2 weeks as a physiological response paralleled by signs of systemic inflammation. Rats were exposed early (1-2 weeks) or late (3-4 weeks after stroke) to an individually monitored enriched environment to stimulate self-controlled high-intensity sensorimotor training. A group of animals received Anti-Nogo antibodies for the first two weeks after stroke, a neuronal growth promoting immunotherapy already in clinical trials. Early exposure to the enriched environment resulted in poor outcome: Training intensity was correlated to enhanced systemic inflammation and functional impairment. In contrast, animals starting intense sensorimotor training two weeks after stroke preceded by the immunotherapy revealed better recovery with functional outcome positively correlated to the training intensity and the extent of re-innervation of the stroke denervated cervical hemi-cord. Our results suggest stroke-induced fatigue as a biological purposeful reaction of the organism during neuronal remodeling, enabling new circuit formation which will then be stabilized or pruned in the subsequent rehabilitative training phase. However, intense training too early may lead to wrong connections and is thus less effective.


Asunto(s)
Fatiga/fisiopatología , Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular/fisiopatología , Animales , Modelos Animales de Enfermedad , Fatiga/etiología , Fatiga/rehabilitación , Femenino , Inflamación/etiología , Inflamación/fisiopatología , Plasticidad Neuronal , Ratas , Ratas Long-Evans , Recuperación de la Función , Accidente Cerebrovascular/complicaciones
5.
Cell ; 172(4): 706-718.e15, 2018 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-29398114

RESUMEN

Dopamine controls essential brain functions through volume transmission. Different from fast synaptic transmission, where neurotransmitter release and receptor activation are tightly coupled by an active zone, dopamine transmission is widespread and may not necessitate these organized release sites. Here, we determine whether striatal dopamine secretion employs specialized machinery for release. Using super resolution microscopy, we identified co-clustering of the active zone scaffolding proteins bassoon, RIM and ELKS in ∼30% of dopamine varicosities. Conditional RIM knockout disrupted this scaffold and, unexpectedly, abolished dopamine release, while ELKS knockout had no effect. Optogenetic experiments revealed that dopamine release was fast and had a high release probability, indicating the presence of protein scaffolds for coupling Ca2+ influx to vesicle fusion. Hence, dopamine secretion is mediated by sparse, mechanistically specialized active zone-like release sites. This architecture supports spatially and temporally precise coding for dopamine and provides molecular machinery for regulation.


Asunto(s)
Axones/metabolismo , Cuerpo Estriado/metabolismo , Dopamina/metabolismo , Transmisión Sináptica/fisiología , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Cuerpo Estriado/citología , Dopamina/genética , Técnicas de Silenciamiento del Gen , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas de Unión al GTP rab
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA