Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Front Immunol ; 15: 1435701, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39044828

RESUMEN

Ceramides generated by the activity of the neutral sphingomyelinase 2 (nSMase2) play a pivotal role in stress responses in mammalian cells. Dysregulation of sphingolipid metabolism has been implicated in numerous inflammation-related pathologies. However, its influence on inflammatory cytokine-induced signaling is yet incompletely understood. Here, we used proximity labeling to explore the plasma membrane proximal protein network of nSMase2 and TNFα-induced changes thereof. We established Jurkat cells stably expressing nSMase2 C-terminally fused to the engineered ascorbate peroxidase 2 (APEX2). Removal of excess biotin phenol substantially improved streptavidin-based affinity purification of biotinylated proteins. Using our optimized protocol, we determined nSMase2-proximal biotinylated proteins and their changes within the first 5 min of TNFα stimulation by quantitative mass spectrometry. We observed significant dynamic changes in the nSMase2 microenvironment in response to TNFα stimulation consistent with rapid remodeling of protein networks. Our data confirmed known nSMase2 interactors and revealed that the recruitment of most proteins depended on nSMase2 enzymatic activity. We measured significant enrichment of proteins related to vesicle-mediated transport, including proteins of recycling endosomes, trans-Golgi network, and exocytic vesicles in the proximitome of enzymatically active nSMase2 within the first minutes of TNFα stimulation. Hence, the nSMase2 proximal network and its TNFα-induced changes provide a valuable resource for further investigations into the involvement of nSMase2 in the early signaling pathways triggered by TNFα.


Asunto(s)
Esfingomielina Fosfodiesterasa , Factor de Necrosis Tumoral alfa , Humanos , Factor de Necrosis Tumoral alfa/farmacología , Factor de Necrosis Tumoral alfa/metabolismo , Células Jurkat , Esfingomielina Fosfodiesterasa/metabolismo , Transducción de Señal , Membrana Celular/metabolismo
2.
Int J Mol Sci ; 24(8)2023 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-37108461

RESUMEN

Recently, we have shown that C6-ceramides efficiently suppress viral replication by trapping the virus in lysosomes. Here, we use antiviral assays to evaluate a synthetic ceramide derivative α-NH2-ω-N3-C6-ceramide (AKS461) and to confirm the biological activity of C6-ceramides inhibiting SARS-CoV-2. Click-labeling with a fluorophore demonstrated that AKS461 accumulates in lysosomes. Previously, it has been shown that suppression of SARS-CoV-2 replication can be cell-type specific. Thus, AKS461 inhibited SARS-CoV-2 replication in Huh-7, Vero, and Calu-3 cells up to 2.5 orders of magnitude. The results were confirmed by CoronaFISH, indicating that AKS461 acts comparable to the unmodified C6-ceramide. Thus, AKS461 serves as a tool to study ceramide-associated cellular and viral pathways, such as SARS-CoV-2 infections, and it helped to identify lysosomes as the central organelle of C6-ceramides to inhibit viral replication.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Ceramidas/farmacología , Ceramidas/metabolismo , Replicación Viral , Antivirales/farmacología
3.
Cells ; 11(16)2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-36010608

RESUMEN

SARS-CoV-2 variants such as the delta or omicron variants, with higher transmission rates, accelerated the global COVID-19 pandemic. Thus, novel therapeutic strategies need to be deployed. The inhibition of acid sphingomyelinase (ASM), interfering with viral entry by fluoxetine was reported. Here, we described the acid ceramidase as an additional target of fluoxetine. To discover these effects, we synthesized an ASM-independent fluoxetine derivative, AKS466. High-resolution SARS-CoV-2-RNA FISH and RTqPCR analyses demonstrate that AKS466 down-regulates viral gene expression. It is shown that SARS-CoV-2 deacidifies the lysosomal pH using the ORF3 protein. However, treatment with AKS488 or fluoxetine lowers the lysosomal pH. Our biochemical results show that AKS466 localizes to the endo-lysosomal replication compartments of infected cells, and demonstrate the enrichment of the viral genomic, minus-stranded RNA and mRNAs there. Both fluoxetine and AKS466 inhibit the acid ceramidase activity, cause endo-lysosomal ceramide elevation, and interfere with viral replication. Furthermore, Ceranib-2, a specific acid ceramidase inhibitor, reduces SARS-CoV-2 replication and, most importantly, the exogenous supplementation of C6-ceramide interferes with viral replication. These results support the hypotheses that the acid ceramidase is a SARS-CoV-2 host factor.


Asunto(s)
Ceramidasa Ácida , Tratamiento Farmacológico de COVID-19 , Ceramidasa Ácida/genética , Ceramidasa Ácida/metabolismo , Fluoxetina , Humanos , Pandemias , ARN , SARS-CoV-2
4.
Cells ; 10(9)2021 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34571822

RESUMEN

As viruses are obligatory intracellular parasites, any step during their life cycle strictly depends on successful interaction with their particular host cells. In particular, their interaction with cellular membranes is of crucial importance for most steps in the viral replication cycle. Such interactions are initiated by uptake of viral particles and subsequent trafficking to intracellular compartments to access their replication compartments which provide a spatially confined environment concentrating viral and cellular components, and subsequently, employ cellular membranes for assembly and exit of viral progeny. The ability of viruses to actively modulate lipid composition such as sphingolipids (SLs) is essential for successful completion of the viral life cycle. In addition to their structural and biophysical properties of cellular membranes, some sphingolipid (SL) species are bioactive and as such, take part in cellular signaling processes involved in regulating viral replication. It is especially due to the progress made in tools to study accumulation and dynamics of SLs, which visualize their compartmentalization and identify interaction partners at a cellular level, as well as the availability of genetic knockout systems, that the role of particular SL species in the viral replication process can be analyzed and, most importantly, be explored as targets for therapeutic intervention.


Asunto(s)
Esfingolípidos/metabolismo , Virosis , Transporte Biológico , Membrana Celular/química , Ceramidas/metabolismo , Sistemas de Liberación de Medicamentos , VIH/crecimiento & desarrollo , Interacciones Microbiota-Huesped , Membranas Intracelulares/química , SARS-CoV-2/crecimiento & desarrollo , Virión , Replicación Viral , Virus/crecimiento & desarrollo
6.
Cell Signal ; 82: 109959, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33631318

RESUMEN

Insulin is the main anabolic hormone secreted by ß-cells of the pancreas stimulating the assimilation and storage of glucose in muscle and fat cells. It modulates the postprandial balance of carbohydrates, lipids and proteins via enhancing lipogenesis, glycogen and protein synthesis and suppressing glucose generation and its release from the liver. Resistance to insulin is a severe metabolic disorder related to a diminished response of peripheral tissues to the insulin action and signaling. This leads to a disturbed glucose homeostasis that precedes the onset of type 2 diabetes (T2D), a disease reaching epidemic proportions. A large number of studies reported an association between elevated circulating fatty acids and the development of insulin resistance. The increased fatty acid lipid flux results in the accumulation of lipid droplets in a variety of tissues. However, lipid intermediates such as diacylglycerols and ceramides are also formed in response to elevated fatty acid levels. These bioactive lipids have been associated with the pathogenesis of insulin resistance. More recently, sphingosine 1-phosphate (S1P), another bioactive sphingolipid derivative, has also been shown to increase in T2D and obesity. Although many studies propose a protective role of S1P metabolism on insulin signaling in peripheral tissues, other studies suggest a causal role of S1P on insulin resistance. In this review, we critically summarize the current state of knowledge of S1P metabolism and its modulating role on insulin resistance. A particular emphasis is placed on S1P and insulin signaling in hepatocytes, skeletal muscle cells, adipocytes and pancreatic ß-cells. In particular, modulation of receptors and enzymes that regulate S1P metabolism can be considered as a new therapeutic option for the treatment of insulin resistance and T2D.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Insulina/metabolismo , Lisofosfolípidos/metabolismo , Obesidad/metabolismo , Esfingosina/análogos & derivados , Adipocitos/citología , Adipocitos/metabolismo , Adipocitos/patología , Animales , Hepatocitos/citología , Hepatocitos/metabolismo , Hepatocitos/patología , Humanos , Resistencia a la Insulina , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patología , Esfingosina/metabolismo
7.
Front Mol Biosci ; 7: 217, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33088808

RESUMEN

Neutral sphingomyelinase-2 (NSM2) is a member of a superfamily of enzymes responsible for conversion of sphingomyelin into phosphocholine and ceramide at the cytosolic leaflet of the plasma membrane. Upon specific ablation of NSM2, T cells proved to be hyper-responsive to CD3/CD28 co-stimulation, indicating that the enzyme acts to dampen early overshooting activation of these cells. It remained unclear whether hyper-reactivity of NSM2-deficient T cells is supported by a deregulated metabolic activity in these cells. Here, we demonstrate that ablation of NSM2 activity affects metabolism of the quiescent CD4+ T cells which accumulate ATP in mitochondria and increase basal glycolytic activity. This supports enhanced production of total ATP and metabolic switch early after TCR/CD28 stimulation. Most interestingly, increased metabolic activity in resting NSM2-deficient T cells does not support sustained response upon stimulation. While elevated under steady-state conditions in NSM2-deficient CD4+ T cells, the mTORC1 pathway regulating mitochondria size, oxidative phosphorylation, and ATP production is impaired after 24 h of stimulation. Taken together, the absence of NSM2 promotes a hyperactive metabolic state in unstimulated CD4+ T cells yet fails to support sustained T cell responses upon antigenic stimulation.

8.
Front Cell Dev Biol ; 7: 152, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31457008

RESUMEN

Sphingolipids are major components of cellular membranes, and at steady-state level, their metabolic fluxes are tightly controlled. On challenge by external signals, they undergo rapid turnover, which substantially affects the biophysical properties of membrane lipid and protein compartments and, consequently, signaling and morphodynamics. In T cells, external cues translate into formation of membrane microdomains where proximal signaling platforms essential for metabolic reprograming and cytoskeletal reorganization are organized. This review will focus on sphingomyelinases, which mediate sphingomyelin breakdown and ensuing ceramide release that have been implicated in T-cell viability and function. Acting at the sphingomyelin pool at the extrafacial or cytosolic leaflet of cellular membranes, acid and neutral sphingomyelinases organize ceramide-enriched membrane microdomains that regulate T-cell homeostatic activity and, upon stimulation, compartmentalize receptors, membrane proximal signaling complexes, and cytoskeletal dynamics as essential for initiating T-cell motility and interaction with endothelia and antigen-presenting cells. Prominent examples to be discussed in this review include death receptor family members, integrins, CD3, and CD28 and their associated signalosomes. Progress made with regard to experimental tools has greatly aided our understanding of the role of bioactive sphingolipids in T-cell biology at a molecular level and of targets explored by a model pathogen (measles virus) to specifically interfere with their physiological activity.

9.
Front Immunol ; 10: 1294, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31231395

RESUMEN

Transmission of measles virus (MV) from dendritic to airway epithelial cells is considered as crucial to viral spread late in infection. Therefore, pathways and effectors governing this process are promising targets for intervention. To identify these, we established a 3D respiratory tract model where MV transmission by infected dendritic cells (DCs) relied on the presence of nectin-4 on H358 lung epithelial cells. Access to recipient cells is an important prerequisite for transmission, and we therefore analyzed migration of MV-exposed DC cultures within the model. Surprisingly, enhanced motility toward the epithelial layer was observed for MV-infected DCs as compared to their uninfected siblings. This occurred independently of factors released from H358 cells indicating that MV infection triggered cytoskeletal remodeling associated with DC polarization enforced velocity. Accordingly, the latter was also observed for MV-infected DCs in collagen matrices and was particularly sensitive to ROCK inhibition indicating infected DCs preferentially employed the amoeboid migration mode. This was also implicated by loss of podosomes and reduced filopodial activity both of which were retained in MV-exposed uninfected DCs. Evidently, sphingosine kinase (SphK) and sphingosine-1-phosphate (S1P) as produced in response to virus-infection in DCs contributed to enhanced velocity because this was abrogated upon inhibition of sphingosine kinase activity. These findings indicate that MV infection promotes a push-and-squeeze fast amoeboid migration mode via the SphK/S1P system characterized by loss of filopodia and podosome dissolution. Consequently, this enables rapid trafficking of virus toward epithelial cells during viral exit.


Asunto(s)
Movimiento Celular/inmunología , Células Dendríticas , Virus del Sarampión/inmunología , Sarampión , Mucosa Respiratoria , Células Dendríticas/inmunología , Células Dendríticas/patología , Células Dendríticas/virología , Humanos , Sarampión/inmunología , Sarampión/patología , Sarampión/transmisión , Mucosa Respiratoria/inmunología , Mucosa Respiratoria/patología , Mucosa Respiratoria/virología
10.
FASEB J ; 33(1): 275-285, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-29979630

RESUMEN

Bacterial pore-forming toxins compromise plasmalemmal integrity, leading to Ca2+ influx, leakage of the cytoplasm, and cell death. Such lesions can be repaired by microvesicular shedding or by the endocytic uptake of the injured membrane sites. Cells have at their disposal an entire toolbox of repair proteins for the identification and elimination of membrane lesions. Sphingomyelinases catalyze the breakdown of sphingomyelin into ceramide and phosphocholine. Sphingomyelin is predominantly localized in the outer leaflet, where it is hydrolyzed by acid sphingomyelinase (ASM) after lysosomal fusion with the plasma membrane. The magnesium-dependent neutral sphingomyelinase (NSM)-2 is found at the inner leaflet of the plasmalemma. Because either sphingomyelinase has been ascribed a role in the cellular stress response, we investigated their role in plasma membrane repair and cellular survival after treatment with the pore-forming toxins listeriolysin O (LLO) or pneumolysin (PLY). Jurkat T cells, in which ASM or NSM-2 was down-regulated [ASM knockdown (KD) or NSM-2 KD cells], showed inverse reactions to toxin-induced membrane damage: ASM KD cells displayed reduced toxin resistance, decreased viability, and defects in membrane repair. In contrast, the down-regulation of NSM-2 led to an increase in viability and enhanced plasmalemmal repair. Yet, in addition to the increased plasmalemmal repair, the enhanced toxin resistance of NSM-2 KD cells also appeared to be dependent on the activation of p38/MAPK, which was constitutively activated, whereas in ASM KD cells, the p38/MAPK activation was constitutively blunted.-Schoenauer, R., Larpin, Y., Babiychuk, E. B., Drücker, P., Babiychuk, V. S., Avota, E., Schneider-Schaulies, S., Schumacher, F., Kleuser, B., Köffel, R., Draeger, A. Down-regulation of acid sphingomyelinase and neutral sphingomyelinase-2 inversely determines the cellular resistance to plasmalemmal injury by pore-forming toxins.


Asunto(s)
Toxinas Bacterianas/farmacología , Membrana Celular/metabolismo , Proteínas de Choque Térmico/farmacología , Proteínas Hemolisinas/farmacología , Esfingomielina Fosfodiesterasa/antagonistas & inhibidores , Estreptolisinas/farmacología , Proteínas Bacterianas/farmacología , Transporte Biológico , Sistemas CRISPR-Cas , Calcio/metabolismo , Membrana Celular/química , Membrana Celular/efectos de los fármacos , Supervivencia Celular , Micropartículas Derivadas de Células/química , Micropartículas Derivadas de Células/efectos de los fármacos , Micropartículas Derivadas de Células/metabolismo , Humanos , Esfingomielina Fosfodiesterasa/genética , Esfingomielina Fosfodiesterasa/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
11.
Front Immunol ; 9: 815, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29720981

RESUMEN

By promoting ceramide release at the cytosolic membrane leaflet, the neutral sphingomyelinase 2 (NSM) is capable of organizing receptor and signalosome segregation. Its role in T cell receptor (TCR) signaling remained so far unknown. We now show that TCR-driven NSM activation is dispensable for TCR clustering and initial phosphorylation, but of crucial importance for further signal amplification. In particular, at low doses of TCR stimulatory antibodies, NSM is required for Ca2+ mobilization and T cell proliferation. NSM-deficient T cells lack sustained CD3ζ and ZAP-70 phosphorylation and are unable to polarize and stabilize their microtubular system. We identified PKCζ as the key NSM downstream effector in this second wave of TCR signaling supporting dynamics of microtubule-organizing center (MTOC). Ceramide supplementation rescued PKCζ membrane recruitment and MTOC translocation in NSM-deficient cells. These findings identify the NSM as essential in TCR signaling when dynamic cytoskeletal reorganization promotes continued lateral and vertical supply of TCR signaling components: CD3ζ, Zap70, and PKCζ, and functional immune synapses are organized and stabilized via MTOC polarization.


Asunto(s)
Receptores de Antígenos de Linfocitos T/inmunología , Receptores de Antígenos de Linfocitos T/fisiología , Esfingomielina Fosfodiesterasa/inmunología , Linfocitos T/inmunología , Complejo CD3/inmunología , Diferenciación Celular , Ceramidas/farmacología , Humanos , Células Jurkat , Activación de Linfocitos , Centro Organizador de los Microtúbulos/inmunología , Fosforilación , Transducción de Señal , Linfocitos T/efectos de los fármacos , Proteína Tirosina Quinasa ZAP-70/metabolismo
12.
Biol Chem ; 399(10): 1147-1155, 2018 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-29337691

RESUMEN

By hydrolyzing its substrate sphingomyelin at the cytosolic leaflet of cellular membranes, the neutral sphingomyelinase 2 (NSM2) generates microdomains which serve as docking sites for signaling proteins and thereby, functions to regulate signal relay. This has been particularly studied in cellular stress responses while the regulatory role of this enzyme in the immune cell compartment has only recently emerged. In T cells, phenotypic polarization by co-ordinated cytoskeletal remodeling is central to motility and interaction with endothelial or antigen-presenting cells during tissue recruitment or immune synapse formation, respectively. This review highlights studies adressing the role of NSM2 in T cell polarity in which the enzyme plays a major role in regulating cytoskeletal dynamics.


Asunto(s)
Polaridad Celular , Receptores de Antígenos de Linfocitos T/inmunología , Esfingomielina Fosfodiesterasa/metabolismo , Linfocitos T/citología , Linfocitos T/inmunología , Animales , Humanos , Transducción de Señal , Linfocitos T/metabolismo
13.
Front Immunol ; 8: 1007, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28871263

RESUMEN

Breakdown of sphingomyelin as catalyzed by the activity of sphingomyelinases profoundly affects biophysical properties of cellular membranes which is particularly important with regard to compartmentalization of surface receptors and their signaling relay. As it is activated both upon TCR ligation and co-stimulation in a spatiotemporally controlled manner, the neutral sphingomyelinase (NSM) has proven to be important in T cell activation, where it appears to play a particularly important role in cytoskeletal reorganization and cell polarization. Because these are important parameters in directional T cell migration and motility in tissues, we analyzed the role of the NSM in these processes. Pharmacological inhibition of NSM interfered with early lymph node homing of T cells in vivo indicating that the enzyme impacts on endothelial adhesion, transendothelial migration, sensing of chemokine gradients or, at a cellular level, acquisition of a polarized phenotype. NSM inhibition reduced adhesion of T cells to TNF-α/IFN-γ activated, but not resting endothelial cells, most likely via inhibiting high-affinity LFA-1 clustering. NSM activity proved to be highly important in directional T cell motility in response to SDF1-α, indicating that their ability to sense and translate chemokine gradients might be NSM dependent. In fact, pharmacological or genetic NSM ablation interfered with T cell polarization both at an overall morphological level and redistribution of CXCR4 and pERM proteins on endothelial cells or fibronectin, as well as with F-actin polymerization in response to SDF1-α stimulation, indicating that efficient directional perception and signaling relay depend on NSM activity. Altogether, these data support a central role of the NSM in T cell recruitment and migration both under homeostatic and inflamed conditions by regulating polarized redistribution of receptors and their coupling to the cytoskeleton.

14.
J Immunol ; 196(9): 3951-62, 2016 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-27036914

RESUMEN

Sphingolipids are major components of the plasma membrane. In particular, ceramide serves as an essential building hub for complex sphingolipids, but also as an organizer of membrane domains segregating receptors and signalosomes. Sphingomyelin breakdown as a result of sphingomyelinase activation after ligation of a variety of receptors is the predominant source of ceramides released at the plasma membrane. This especially applies to T lymphocytes where formation of ceramide-enriched membrane microdomains modulates TCR signaling. Because ceramide release and redistribution occur very rapidly in response to receptor ligation, novel tools to further study these processes in living T cells are urgently needed. To meet this demand, we synthesized nontoxic, azido-functionalized ceramides allowing for bio-orthogonal click-reactions to fluorescently label incorporated ceramides, and thus investigate formation of ceramide-enriched domains. Azido-functionalized C6-ceramides were incorporated into and localized within plasma membrane microdomains and proximal vesicles in T cells. They segregated into clusters after TCR, and especially CD28 ligation, indicating efficient sorting into plasma membrane domains associated with T cell activation; this was abolished upon sphingomyelinase inhibition. Importantly, T cell activation was not abrogated upon incorporation of the compound, which was efficiently excluded from the immune synapse center as has previously been seen in Ab-based studies using fixed cells. Therefore, the functionalized ceramides are novel, highly potent tools to study the subcellular redistribution of ceramides in the course of T cell activation. Moreover, they will certainly also be generally applicable to studies addressing rapid stimulation-mediated ceramide release in living cells.


Asunto(s)
Azidas/metabolismo , Microdominios de Membrana/metabolismo , Microscopía Fluorescente/métodos , Receptores de Antígenos de Linfocitos T/metabolismo , Esfingolípidos/metabolismo , Linfocitos T/metabolismo , Azidas/química , Células Cultivadas , Humanos , Activación de Linfocitos , Transporte de Proteínas , Agregación de Receptores , Transducción de Señal , Esfingolípidos/química , Linfocitos T/inmunología
15.
Eur J Immunol ; 45(6): 1748-59, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25752285

RESUMEN

Though mostly defective, human endogenous retroviruses (HERV) can retain open reading frames, which are especially expressed in the placenta. There, the envelope (env) proteins of HERV-W (Syncytin-1), HERV-FRD (Syncytin-2), and HERV-K (HML-2) were implicated in tolerance against the semi-allogenic fetus. Here, we show that the known HERV env-binding receptors ASCT-1 and -2 and MFSD2 are expressed by DCs and T-cells. When used as effectors in coculture systems, CHO cells transfected to express Syncytin-1, -2, or HML-2 did not affect T-cell expansion or overall LPS-driven phenotypic DC maturation, however, promoted release of IL-12 and TNF-α rather than IL-10. In contrast, HERV env expressing choriocarcinoma cell lines suppressed T-cell proliferation and LPS-induced TNF-α and IL-12 release, however, promoted IL-10 accumulation, indicating that these effects might not rely on HERV env interactions. However, DCs conditioned by choriocarcinoma, but also transgenic CHO cells failed to promote allogenic T-cell expansion. This was associated with a loss of DC/T-cell conjugate frequencies, impaired Ca(2+) mobilization, and aberrant patterning of f-actin and tyrosine phosphorylated proteins in T-cells. Altogether, these findings suggest that HERV env proteins target T-cell activation indirectly by modulating the stimulatory activity of DCs.


Asunto(s)
Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Retrovirus Endógenos/metabolismo , Activación de Linfocitos/inmunología , Linfocitos T/inmunología , Proteínas del Envoltorio Viral/metabolismo , Sistema de Transporte de Aminoácidos ASC/genética , Sistema de Transporte de Aminoácidos ASC/metabolismo , Animales , Células CHO , Comunicación Celular/inmunología , Diferenciación Celular , Línea Celular , Coriocarcinoma/genética , Coriocarcinoma/inmunología , Coriocarcinoma/metabolismo , Cricetulus , Citocinas/biosíntesis , Células Dendríticas/citología , Retrovirus Endógenos/genética , Femenino , Expresión Génica , Productos del Gen env/genética , Productos del Gen env/metabolismo , Humanos , Fenotipo , Embarazo , Proteínas Gestacionales/genética , Proteínas Gestacionales/metabolismo , Linfocitos T/metabolismo , Proteínas del Envoltorio Viral/genética
16.
Biol Chem ; 396(6-7): 585-95, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25525752

RESUMEN

Viruses exploit membranes and their components such as sphingolipids in all steps of their life cycle including attachment and membrane fusion, intracellular transport, replication, protein sorting and budding. Examples for sphingolipid-dependent virus entry are found for: human immunodeficiency virus (HIV), which besides its protein receptors also interacts with glycosphingolipids (GSLs); rhinovirus, which promotes the formation of ceramide-enriched platforms and endocytosis; or measles virus (MV), which induces the surface expression of its own receptor CD150 via activation of sphingomyelinases (SMases). While SMase activation was implicated in Ebola virus (EBOV) attachment, the virus utilizes the cholesterol transporter Niemann-Pick C protein 1 (NPC1) as 'intracellular' entry receptor after uptake into endosomes. Differential activities of SMases also affect the intracellular milieu required for virus replication. Sindbis virus (SINV), for example, replicates better in cells lacking acid SMase (ASMase). Defined lipid compositions of viral assembly and budding sites influence virus release and infectivity, as found for hepatitis C virus (HCV) or HIV. And finally, viruses manipulate cellular signaling and the sphingolipid metabolism to their advantage, as for example influenza A virus (IAV), which activates sphingosine kinase 1 and the transcription factor NF-κB.


Asunto(s)
Esfingolípidos/metabolismo , Fenómenos Fisiológicos de los Virus , Línea Celular , Ceramidas/metabolismo , Humanos , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Esfingomielina Fosfodiesterasa/metabolismo , Internalización del Virus
17.
Cell Microbiol ; 17(2): 241-53, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25224994

RESUMEN

Disseminated gonococcal infection (DGI) is a rare but serious complication caused by the spread of Neisseria gonorrhoeae in the human host. Gonococci associated with DGI mainly express the outer membrane protein PorBIA that binds to the scavenger receptor expressed on endothelial cells (SREC-I) and mediates bacterial uptake. We recently demonstrated that this interaction relies on intact membrane rafts that acquire SREC-I upon attachment of gonococci and initiates the signalling cascade that finally leads to the uptake of gonococci in epithelial cells. In this study, we analysed the role of sphingomyelinases and their breakdown product ceramide. Gonococcal infection induced increased levels of ceramide that was enriched at bacterial attachment sites. Interestingly, neutral but not acid sphingomyelinase was mandatory for PorBIA -mediated invasion into host cells. Neutral sphingomyelinase was required to recruit the PI3 kinase to caveolin and thereby activates the PI3 kinase-dependent downstream signalling leading to bacterial uptake. Thus, this study elucidates the initial signalling processes of bacterial invasion during DGI and demonstrates a novel role for neutral sphingomyelinase in the course of bacterial infections.


Asunto(s)
Endocitosis , Interacciones Huésped-Patógeno , Neisseria gonorrhoeae/fisiología , Porinas/metabolismo , Esfingomielina Fosfodiesterasa/metabolismo , Animales , Células Cultivadas , Ceramidas/metabolismo , Humanos , Transducción de Señal
18.
PLoS Pathog ; 10(12): e1004574, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25521388

RESUMEN

T cell paralysis is a main feature of measles virus (MV) induced immunosuppression. MV contact mediated activation of sphingomyelinases was found to contribute to MV interference with T cell actin reorganization. The role of these enzymes in MV-induced inhibition of T cell activation remained equally undefined as their general role in regulating immune synapse (IS) activity which relies on spatiotemporal membrane patterning. Our study for the first time reveals that transient activation of the neutral sphingomyelinase 2 (NSM2) occurs in physiological co-stimulation of primary T cells where ceramide accumulation is confined to the lamellum (where also NSM2 can be detected) and excluded from IS areas of high actin turnover. Genetic ablation of the enzyme is associated with T cell hyper-responsiveness as revealed by actin dynamics, tyrosine phosphorylation, Ca2+-mobilization and expansion indicating that NSM2 acts to suppress overshooting T cell responses. In line with its suppressive activity, exaggerated, prolonged NSM2 activation as occurring in co-stimulated T cells following MV exposure was associated with aberrant compartmentalization of ceramides, loss of spreading responses, interference with accumulation of tyrosine phosphorylated protein species and expansion. Altogether, this study for the first time reveals a role of NSM2 in physiological T cell stimulation which is dampening and can be abused by a virus, which promotes enhanced and prolonged NSM2 activation to cause pathological T cell suppression.


Asunto(s)
Virus del Sarampión/fisiología , Esfingomielina Fosfodiesterasa/fisiología , Factores Supresores Inmunológicos/fisiología , Linfocitos T/fisiología , Linfocitos T/virología , Actinas/fisiología , Antígenos CD28/fisiología , Complejo CD3/fisiología , Células Cultivadas , Ceramidas/fisiología , Humanos , Lípidos de la Membrana/fisiología , Proteínas de la Membrana/fisiología
19.
Cell Physiol Biochem ; 34(1): 20-6, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24977478

RESUMEN

Measles virus (MV) efficiently causes generalized immunosuppression which accounts to a major extent for cases of measles-asscociated severe morbidity and mortality. MV infections alter many functions of antigen presenting cells (APC) (dendritic cells (DCs)) and lymphocytes, yet many molecular targets of the virus remain poorly defined. Cellular interactions and effector functions of DCs and lymphocytes are regulated by surface receptors. Associating with other proteins involved in cell signaling, receptors form part of receptosomes that respond to and transmit external signals through dynamic interctions with the cytoskeleton. Alterations in the composition and metabolism of membrane sphingolipids have a substantial impact on both processes. In this review we focus on the regulation of sphingomyelinase activity and ceramide release in cells exposed to MV and discuss the immunosuppressive role of sphingomyelin breakdown induced by MV.


Asunto(s)
Virus del Sarampión/patogenicidad , Esfingomielinas/metabolismo , Citoesqueleto de Actina/metabolismo , Ceramidas/metabolismo , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Humanos , Tolerancia Inmunológica , Virus del Sarampión/inmunología , Linfocitos T/inmunología , Linfocitos T/metabolismo
20.
PLoS Pathog ; 10(6): e1004160, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24945304

RESUMEN

The interaction with brain endothelial cells is central to the pathogenicity of Neisseria meningitidis infections. Here, we show that N. meningitidis causes transient activation of acid sphingomyelinase (ASM) followed by ceramide release in brain endothelial cells. In response to N. meningitidis infection, ASM and ceramide are displayed at the outer leaflet of the cell membrane and condense into large membrane platforms which also concentrate the ErbB2 receptor. The outer membrane protein Opc and phosphatidylcholine-specific phospholipase C that is activated upon binding of the pathogen to heparan sulfate proteoglycans, are required for N. meningitidis-mediated ASM activation. Pharmacologic or genetic ablation of ASM abrogated meningococcal internalization without affecting bacterial adherence. In accordance, the restricted invasiveness of a defined set of pathogenic isolates of the ST-11/ST-8 clonal complex into brain endothelial cells directly correlated with their restricted ability to induce ASM and ceramide release. In conclusion, ASM activation and ceramide release are essential for internalization of Opc-expressing meningococci into brain endothelial cells, and this segregates with invasiveness of N. meningitidis strains.


Asunto(s)
Encéfalo/irrigación sanguínea , Ceramidas/metabolismo , Endotelio Vascular/microbiología , Interacciones Huésped-Patógeno , Neisseria meningitidis/patogenicidad , Esfingomielina Fosfodiesterasa/metabolismo , Regulación hacia Arriba , Adhesión Bacteriana/efectos de los fármacos , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/microbiología , Línea Celular Transformada , Membrana Celular/efectos de los fármacos , Membrana Celular/enzimología , Membrana Celular/metabolismo , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/metabolismo , Activación Enzimática/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Interacciones Huésped-Patógeno/efectos de los fármacos , Humanos , Microdominios de Membrana/efectos de los fármacos , Microdominios de Membrana/enzimología , Microdominios de Membrana/metabolismo , Meningitis Meningocócica/enzimología , Meningitis Meningocócica/metabolismo , Meningitis Meningocócica/microbiología , Microvasos/efectos de los fármacos , Microvasos/metabolismo , Microvasos/microbiología , Mutación , Neisseria meningitidis/fisiología , Esfingomielina Fosfodiesterasa/antagonistas & inhibidores , Propiedades de Superficie/efectos de los fármacos , Migración Transendotelial y Transepitelial/efectos de los fármacos , Fosfolipasas de Tipo C/genética , Fosfolipasas de Tipo C/metabolismo , Regulación hacia Arriba/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA