Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
ACS Biomater Sci Eng ; 6(8): 4462-4475, 2020 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-33455187

RESUMEN

Body-on-a-chip and human-on-a-chip systems are currently being used to augment and could eventually replace animal models in drug discovery and basic biological research. However, hydrophobic molecules, especially therapeutic compounds, tend to adsorb to the polymer materials used to create these microfluidic platforms, which may distort the dose-response curves that feed into pharmacokinetic/pharmacodynamic (PK/PD) models, which translate preclinical data into predictions of clinical outcomes. Inverse liquid-solid chromatography paired with a numerical optimization based on the Langmuir model of adsorption was used to characterize the adsorption isotherm parameters of drugs to polydimethylsiloxane (PDMS) and polymethylmethacrylate (PMMA), polymers commonly used in these platforms. The adsorption isotherms were then compared against concentration measurements of drugs recirculated in these platforms. This research further illustrates the point that by quantifying drug or drug candidate interactions before system dosing and including this data in the PK/PD models, then polymers used in these platforms need not be limited to "less-adsorbing" materials.


Asunto(s)
Preparaciones Farmacéuticas , Polímeros , Adsorción , Cromatografía Liquida , Humanos , Dispositivos Laboratorio en un Chip
2.
Sci Rep ; 9(1): 9619, 2019 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-31270362

RESUMEN

Functional human-on-a-chip systems hold great promise to enable quantitative translation to in vivo outcomes. Here, we explored this concept using a pumpless heart only and heart:liver system to evaluate the temporal pharmacokinetic/pharmacodynamic (PKPD) relationship for terfenadine. There was a time dependent drug-induced increase in field potential duration in the cardiac compartment in response to terfenadine and that response was modulated using a metabolically competent liver module that converted terfenadine to fexofenadine. Using this data, a mathematical model was developed to predict the effect of terfenadine in preclinical species. Developing confidence that microphysiological models could have a transformative effect on drug discovery, we also tested a previously discovered proprietary AstraZeneca small molecule and correctly determined the cardiotoxic response to its metabolite in the heart:liver system. Overall our findings serve as a guiding principle to future investigations of temporal concentration response relationships in these innovative in vitro models, especially, if validated across multiple time frames, with additional pharmacological mechanisms and molecules representing a broad chemical diversity.


Asunto(s)
Procedimientos Analíticos en Microchip , Modelos Teóricos , Farmacocinética , Descubrimiento de Drogas/métodos , Humanos , Dispositivos Laboratorio en un Chip , Procedimientos Analíticos en Microchip/métodos , Modelos Biológicos , Especificidad de Órganos , Investigación Biomédica Traslacional/métodos
3.
Adv Funct Mater ; 29(8)2019 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-35586798

RESUMEN

The goal of human-on-a-chip systems is to capture multi-organ complexity and predict the human response to compounds within physiologically relevant platforms. The generation and characterization of such systems is currently a focal point of research given the long-standing inadequacies of conventional techniques for predicting human outcome. Functional systems can measure and quantify key cellular mechanisms that correlate with the physiological status of a tissue, and can be used to evaluate therapeutic challenges utilizing many of the same endpoints used in animal experiments or clinical trials. Culturing multiple organ compartments in a platform creates a more physiologic environment (organ-organ communication). Here is reported a human 4-organ system composed of heart, liver, skeletal muscle and nervous system modules that maintains cellular viability and function over 28 days in serum-free conditions using a pumpless system. The integration of non-invasive electrical evaluation of neurons and cardiac cells and mechanical determination of cardiac and skeletal muscle contraction allows the monitoring of cellular function especially for chronic toxicity studies in vitro. The 28 day period is the minimum timeframe for animal studies to evaluate repeat dose toxicity. This technology could be a relevant alternative to animal testing by monitoring multi-organ function upon long term chemical exposure.

4.
Biomaterials ; 182: 176-190, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30130706

RESUMEN

Regulation of cosmetic testing and poor predictivity of preclinical drug studies has spurred efforts to develop new methods for systemic toxicity. Current in vitro assays do not fully represent physiology, often lacking xenobiotic metabolism. Functional human multi-organ systems containing iPSC derived cardiomyocytes and primary hepatocytes were maintained under flow using a low-volume pumpless system in a serum-free medium. The functional readouts for contractile force and electrical conductivity enabled the non-invasive study of cardiac function. The presence of the hepatocytes in the system induced cardiotoxic effects from cyclophosphamide and reduced them for terfenadine due to drug metabolism, as expected from each compound's pharmacology. A computational fluid dynamics simulation enabled the prediction of terfenadine-fexofenadine pharmacokinetics, which was validated by HPLC-MS. This in vitro platform recapitulates primary aspects of the in vivo crosstalk between heart and liver and enables pharmacological studies, involving both organs in a single in vitro platform. The system enables non-invasive readouts of cardiotoxicity of drugs and their metabolites. Hepatotoxicity can also be evaluated by biomarker analysis and change in metabolic function. Integration of metabolic function in toxicology models can improve adverse effects prediction in preclinical studies and this system could also be used for chronic studies as well.


Asunto(s)
Ciclofosfamida/toxicidad , Hepatocitos/efectos de los fármacos , Antagonistas de los Receptores Histamínicos H1 no Sedantes/toxicidad , Inmunosupresores/toxicidad , Dispositivos Laboratorio en un Chip , Miocitos Cardíacos/efectos de los fármacos , Terfenadina/toxicidad , Cardiotoxicidad/etiología , Línea Celular , Células Cultivadas , Técnicas de Cocultivo/instrumentación , Ciclofosfamida/metabolismo , Evaluación Preclínica de Medicamentos/instrumentación , Diseño de Equipo , Hepatocitos/citología , Hepatocitos/metabolismo , Antagonistas de los Receptores Histamínicos H1 no Sedantes/metabolismo , Humanos , Inmunosupresores/metabolismo , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Terfenadina/metabolismo
5.
Biotechnol Prog ; 31(6): 1613-22, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26317319

RESUMEN

Pre-clinical testing of drug candidates in animal models is expensive, time-consuming, and often fails to predict drug effects in humans. Industry and academia alike are working to build human-based in vitro test beds and advanced high throughput screening systems to improve the translation of preclinical results to human drug trials. Human neurons derived from induced pluripotent stems cells (hiPSCs) are readily available for use within these test-beds and high throughput screens, but there remains a need to robustly evaluate cellular behavior prior to their incorporation in such systems. This study reports on the characterization of one source of commercially available hiPSC-derived neurons, iCell(®) Neurons, for their long-term viability and functional performance to assess their suitability for integration within advanced in vitro platforms. The purity, morphology, survival, identity, and functional maturation of the cells utilizing different culture substrates and medium combinations were evaluated over 28 days in vitro (DIV). Patch-clamp electrophysiological data demonstrated increased capacity for repetitive firing of action potentials across all culture conditions. Significant differences in cellular maturity, morphology, and functional performance were observed in the different conditions, highlighting the importance of evaluating different surface types and growth medium compositions for application in specific in vitro protocols.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/fisiología , Neuronas/citología , Neuronas/fisiología , Supervivencia Celular , Células Cultivadas , Humanos , Técnicas de Placa-Clamp
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA