Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Cell Host Microbe ; 31(10): 1620-1638.e7, 2023 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-37776865

RESUMEN

Immunoglobulin A (IgA) is an important factor in maintaining homeostasis at mucosal surfaces, yet luminal IgA levels vary widely. Total IgA levels are thought to be driven by individual immune responses to specific microbes. Here, we found that the prebiotic, pectin oligosaccharide (pec-oligo), induced high IgA levels in the small intestine in a T cell-dependent manner. Surprisingly, this IgA-high phenotype was retained after cessation of pec-oligo treatment, and microbiome transmission either horizontally or vertically was sufficient to retain high IgA levels in the absence of pec-oligo. Interestingly, the bacterial taxa enriched in the overall pec-oligo bacterial community differed from IgA-coated microbes in this same community. Rather, a group of ethanol-resistant microbes, highly enriched for Lachnospiraceae bacterium A2, drove the IgA-high phenotype. These findings support a model of intestinal adaptive immunity in which a limited number of microbes can promote durable changes in IgA directed to many symbionts.


Asunto(s)
Intestinos , Microbiota , Ratones , Animales , Intestinos/microbiología , Intestino Delgado , Inmunoglobulina A , Bacterias , Mucosa Intestinal/microbiología
2.
Sci Rep ; 9(1): 13574, 2019 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-31537840

RESUMEN

Immunoglobulin A is the dominant antibody isotype found in mucosal secretions and enforces host-microbiota symbiosis in mice, yet selective IgA-deficiency (sIgAd) in humans is often described as asymptomatic. Here, we determined the effects of IgA deficiency on human gut microbiota composition and evaluated the possibility that mucosal secretion of IgM can compensate for a lack of secretory IgA. We used 16S rRNA gene sequencing and bacterial cell sorting to evaluate gut microbiota composition and taxa-specific antibody coating of the gut microbiota in 15 sIgAd subjects and matched controls. Despite the secretion of compensatory IgM into the gut lumen, sIgAd subjects displayed an altered gut microbiota composition as compared to healthy controls. These alterations were characterized by a trend towards decreased overall microbial diversity as well as significant shifts in the relative abundances of specific microbial taxa. While secretory IgA in healthy controls targeted a defined subset of the microbiota via high-level coating, compensatory IgM in sIgAd subjects showed less specificity than IgA and bound a broader subset of the microbiota. We conclude that IgA plays a critical and non-redundant role in controlling gut microbiota composition in humans and that secretory IgA has evolved to maintain a diverse and stable gut microbial community.


Asunto(s)
Bacterias/clasificación , Disbiosis/inmunología , Inmunoglobulina A Secretora/metabolismo , Inmunoglobulina M/metabolismo , Adulto , Bacterias/genética , Bacterias/aislamiento & purificación , Estudios de Casos y Controles , ADN Ribosómico/genética , Disbiosis/microbiología , Femenino , Humanos , Masculino , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
3.
Elife ; 72018 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-30226189

RESUMEN

Human gut Bacteroides use surface-exposed lipoproteins to bind and metabolize complex polysaccharides. Although vitamins and other nutrients are also essential for commensal fitness, much less is known about how commensal bacteria compete with each other or the host for these critical resources. Unlike in Escherichia coli, transport loci for vitamin B12 (cobalamin) and other corrinoids in human gut Bacteroides are replete with conserved genes encoding proteins whose functions are unknown. Here we report that one of these proteins, BtuG, is a surface-exposed lipoprotein that is essential for efficient B12 transport in B. thetaiotaomicron. BtuG binds B12 with femtomolar affinity and can remove B12 from intrinsic factor, a critical B12 transport protein in humans. Our studies suggest that Bacteroides use surface-exposed lipoproteins not only for capturing polysaccharides, but also to acquire key vitamins in the gut.


Asunto(s)
Bacteroides/metabolismo , Membrana Celular/metabolismo , Tracto Gastrointestinal/microbiología , Lipoproteínas/metabolismo , Vitamina B 12/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Transporte Biológico/genética , Corrinoides/metabolismo , Ligamiento Genético , Vida Libre de Gérmenes , Humanos , Factor Intrinseco/metabolismo , Ratones , Modelos Moleculares , Electricidad Estática
4.
Curr Biol ; 28(18): R1117-R1119, 2018 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-30253156

RESUMEN

The secretory antibody immunoglobulin A counteracts pathogenic infections at mucosal surfaces. Recent work now reveals that IgA responses can also stabilize intestinal colonization by symbiotic microorganisms and confer resistance to future invasion by exogenous competitors.


Asunto(s)
Microbioma Gastrointestinal , Inmunoglobulina A , Inmunoglobulina A Secretora , Mucosa Intestinal , Intestinos
5.
Cell Host Microbe ; 24(1): 120-132.e6, 2018 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-30008292

RESUMEN

In the mammalian gut, bacteria compete for resources to maintain their populations, but the factors determining their success are poorly understood. We report that the human gut bacterium Bacteroides thetaiotaomicron relies on the stringent response, an intracellular signaling pathway that allocates resources away from growth, to survive carbon starvation and persist in the gut. Genome-scale transcriptomics, 13C-labeling, and metabolomics analyses reveal that B. thetaiotaomicron uses the alarmone (p)ppGpp to repress multiple biosynthetic pathways and upregulate tricarboxylic acid (TCA) cycle genes in these conditions. During carbon starvation, (p)ppGpp triggers accumulation of the metabolite alpha-ketoglutarate, which itself acts as a metabolic regulator; alpha-ketoglutarate supplementation restores viability to a (p)ppGpp-deficient strain. These studies uncover how commensal bacteria adapt to the gut by modulating central metabolism and reveal that halting rather than accelerating growth can be a determining factor for membership in the gut microbiome.


Asunto(s)
Bacteroides thetaiotaomicron/fisiología , Carbono/deficiencia , Tracto Gastrointestinal/microbiología , Guanosina Pentafosfato/metabolismo , Ácidos Cetoglutáricos/metabolismo , Animales , Bacteroides thetaiotaomicron/genética , Ciclo del Ácido Cítrico/genética , Ciclo del Ácido Cítrico/fisiología , Guanosina Pentafosfato/genética , Humanos , Metabolómica , Ratones , Organismos Libres de Patógenos Específicos , Ácido Succínico/metabolismo , Transcriptoma
6.
Infect Immun ; 86(4)2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29339460

RESUMEN

Coxiella burnetii is an intracellular pathogen that replicates in a lysosome-derived vacuole. A determinant necessary for C. burnetii virulence is the Dot/Icm type IVB secretion system (T4SS). The Dot/Icm system delivers more than 100 proteins, called type IV effectors (T4Es), across the vacuolar membrane into the host cell cytosol. Several T4Es have been shown to be important for vacuolar biogenesis. Here, transposon (Tn) insertion sequencing technology (INSeq) was used to identify C. burnetii Nine Mile phase II mutants in an arrayed library, which facilitated the identification and clonal isolation of mutants deficient in 70 different T4E proteins. These effector mutants were screened in HeLa cells for deficiencies in Coxiella-containing vacuole (CCV) biogenesis. This screen identified and validated seven new T4Es that were important for vacuole biogenesis. Loss-of-function mutations in cbu0414 (coxH1), cbu0513, cbu0978 (cem3), cbu1387 (cem6), cbu1524 (caeA), cbu1752, or cbu2028 resulted in a small-vacuole phenotype. These seven mutant strains produced small CCVs in all cells tested, which included macrophage-like cells. The cbu2028::Tn mutant, though unable to develop large CCVs, had intracellular replication rates similar to the rate of the parental strain of C. burnetii, whereas the other six effector mutants defective in CCV biogenesis displayed significant reductions in intracellular replication. Vacuoles created by the cbu0513::Tn mutant did not accumulate lipidated microtubule-associated protein 1A/1B light chain 3 (LC3-II), suggesting a failure in fusion of the CCV with autophagosomes. These seven T4E proteins add to the growing repertoire of C. burnetii factors that contribute to CCV biogenesis.


Asunto(s)
Proteínas Bacterianas/metabolismo , Coxiella burnetii/fisiología , Fiebre Q/metabolismo , Fiebre Q/microbiología , Autofagosomas/metabolismo , Sistemas de Secreción Bacterianos , Coxiella burnetii/genética , Coxiella burnetii/patogenicidad , Elementos Transponibles de ADN , Células Epiteliales/metabolismo , Células Epiteliales/microbiología , Humanos , Lisosomas/metabolismo , Macrófagos/metabolismo , Macrófagos/microbiología , Mutación , Transporte de Proteínas , Vacuolas/metabolismo
7.
Proc Natl Acad Sci U S A ; 114(48): E10446-E10454, 2017 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-29133401

RESUMEN

Legionella pneumophila is the causative agent of a severe pneumonia called Legionnaires' disease. A single strain of L. pneumophila encodes a repertoire of over 300 different effector proteins that are delivered into host cells by the Dot/Icm type IV secretion system during infection. The large number of L. pneumophila effectors has been a limiting factor in assessing the importance of individual effectors for virulence. Here, a transposon insertion sequencing technology called INSeq was used to analyze replication of a pool of effector mutants in parallel both in a mouse model of infection and in cultured host cells. Loss-of-function mutations in genes encoding effector proteins resulted in host-specific or broad virulence phenotypes. Screen results were validated for several effector mutants displaying different virulence phenotypes using genetic complementation studies and infection assays. Specifically, loss-of-function mutations in the gene encoding LegC4 resulted in enhanced L. pneumophila in the lungs of infected mice but not within cultured host cells, which indicates LegC4 augments bacterial clearance by the host immune system. The effector proteins RavY and Lpg2505 were important for efficient replication within both mammalian and protozoan hosts. Further analysis of Lpg2505 revealed that this protein functions as a metaeffector that counteracts host cytotoxicity displayed by the effector protein SidI. Thus, this study identified a large cohort of effectors that contribute to L. pneumophila virulence positively or negatively and has demonstrated regulation of effector protein activities by cognate metaeffectors as being critical for host pathogenesis.


Asunto(s)
Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Interacciones Huésped-Patógeno/inmunología , Legionella pneumophila/patogenicidad , Enfermedad de los Legionarios/inmunología , Animales , Proteínas Bacterianas/inmunología , Citotoxicidad Inmunológica , Modelos Animales de Enfermedad , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Legionella pneumophila/genética , Legionella pneumophila/inmunología , Enfermedad de los Legionarios/microbiología , Mutación con Pérdida de Función , Ratones , Ratones Endogámicos C57BL , Mutagénesis Insercional , Fenotipo , Virulencia/genética
8.
Proc Natl Acad Sci U S A ; 113(13): 3639-44, 2016 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-26957597

RESUMEN

The human gut microbiome is a dynamic and densely populated microbial community that can provide important benefits to its host. Cooperation and competition for nutrients among its constituents only partially explain community composition and interpersonal variation. Notably, certain human-associated Bacteroidetes--one of two major phyla in the gut--also encode machinery for contact-dependent interbacterial antagonism, but its impact within gut microbial communities remains unknown. Here we report that prominent human gut symbionts persist in the gut through continuous attack on their immediate neighbors. Our analysis of just one of the hundreds of species in these communities reveals 12 candidate antibacterial effector loci that can exist in 32 combinations. Through the use of secretome studies, in vitro bacterial interaction assays and multiple mouse models, we uncover strain-specific effector/immunity repertoires that can predict interbacterial interactions in vitro and in vivo, and find that some of these strains avoid contact-dependent killing by accumulating immunity genes to effectors that they do not encode. Effector transmission rates in live animals can exceed 1 billion events per minute per gram of colonic contents, and multiphylum communities of human gut commensals can partially protect sensitive strains from these attacks. Together, these results suggest that gut microbes can determine their interactions through direct contact. An understanding of the strategies human gut symbionts have evolved to target other members of this community may provide new approaches for microbiome manipulation.


Asunto(s)
Microbioma Gastrointestinal/fisiología , Animales , Bacteroides fragilis/genética , Bacteroides fragilis/inmunología , Bacteroides fragilis/fisiología , Femenino , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/inmunología , Genoma Bacteriano , Vida Libre de Gérmenes , Humanos , Masculino , Ratones , Modelos Animales , Filogenia , Simbiosis/genética , Simbiosis/inmunología , Simbiosis/fisiología , Sistemas de Secreción Tipo VI/genética , Sistemas de Secreción Tipo VI/inmunología , Sistemas de Secreción Tipo VI/fisiología
9.
EMBO J ; 29(18): 3068-81, 2010 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-20802464

RESUMEN

What regulates chromosome segregation dynamics in bacteria is largely unknown. Here, we show in Caulobacter crescentus that the polarity factor TipN regulates the directional motion and overall translocation speed of the parS/ParB partition complex by interacting with ParA at the new pole. In the absence of TipN, ParA structures can regenerate behind the partition complex, leading to stalls and back-and-forth motions of parS/ParB, reminiscent of plasmid behaviour. This extrinsic regulation of the parS/ParB/ParA system directly affects not only division site selection, but also cell growth. Other mechanisms, including the pole-organizing protein PopZ, compensate for the defect in segregation regulation in ΔtipN cells. Accordingly, synthetic lethality of PopZ and TipN is caused by severe chromosome segregation and cell division defects. Our data suggest a mechanistic framework for adapting a self-organizing oscillator to create motion suitable for chromosome segregation.


Asunto(s)
Proteínas Bacterianas/metabolismo , Caulobacter crescentus/citología , Ciclo Celular/fisiología , Polaridad Celular , Segregación Cromosómica , Cromosomas Bacterianos/fisiología , Proteínas Bacterianas/genética , Western Blotting , Caulobacter crescentus/fisiología , Inmunoprecipitación , Origen de Réplica
10.
Cell ; 124(5): 1011-23, 2006 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-16530047

RESUMEN

Polarity is often an intrinsic property of the cell, yet little is known about its origin or its maintenance over generations. Here we identify a landmark protein, TipN, which acts as a spatial and temporal cue for setting up the correct polarity in the bacterium Caulobacter crescentus. TipN marks the new pole throughout most of the cell cycle, and its relocation to the nascent poles at the end of division provides a preexisting reference point for orienting the polarity axis in the progeny. Deletion of tipN causes pleiotropic polarity defects, including frequently reversed asymmetry in progeny size and mislocalization of proteins and organelles. Ectopic localization of TipN along the lateral side of the cell creates new axes of polarity leading to cell branching and formation of competent cell poles. Localization defects of the actin-like protein MreB in the DeltatipN mutant suggest that TipN is upstream of MreB in regulating cell polarity.


Asunto(s)
Proteínas Bacterianas/metabolismo , Caulobacter crescentus/citología , Ciclo Celular/fisiología , Polaridad Celular , Proteínas de la Membrana/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Caulobacter crescentus/metabolismo , Flagelos/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Mutación , Conformación Proteica , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA