Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Bone Res ; 12(1): 40, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38987568

RESUMEN

Efficient cellular fusion of mononuclear precursors is the prerequisite for the generation of fully functional multinucleated bone-resorbing osteoclasts. However, the exact molecular factors and mechanisms controlling osteoclast fusion remain incompletely understood. Here we identify RANKL-mediated activation of caspase-8 as early key event during osteoclast fusion. Single cell RNA sequencing-based analyses suggested that activation of parts of the apoptotic machinery accompanied the differentiation of osteoclast precursors into mature multinucleated osteoclasts. A subsequent characterization of osteoclast precursors confirmed that RANKL-mediated activation of caspase-8 promoted the non-apoptotic cleavage and activation of downstream effector caspases that translocated to the plasma membrane where they triggered activation of the phospholipid scramblase Xkr8. Xkr8-mediated exposure of phosphatidylserine, in turn, aided cellular fusion of osteoclast precursors and thereby allowed generation of functional multinucleated osteoclast syncytia and initiation of bone resorption. Pharmacological blockage or genetic deletion of caspase-8 accordingly interfered with fusion of osteoclasts and bone resorption resulting in increased bone mass in mice carrying a conditional deletion of caspase-8 in mononuclear osteoclast precursors. These data identify a novel pathway controlling osteoclast biology and bone turnover with the potential to serve as target for therapeutic intervention during diseases characterized by pathologic osteoclast-mediated bone loss. Proposed model of osteoclast fusion regulated by caspase-8 activation and PS exposure. RANK/RANK-L interaction. Activation of procaspase-8 into caspase-8. Caspase-8 activates caspase-3. Active capase-3 cleaves Xkr8. Local PS exposure is induced. Exposed PS is recognized by the fusion partner. FUSION. PS is re-internalized.


Asunto(s)
Caspasa 8 , Fusión Celular , Osteoclastos , Fosfatidilserinas , Proteínas de Transferencia de Fosfolípidos , Caspasa 8/metabolismo , Caspasa 8/genética , Animales , Osteoclastos/metabolismo , Fosfatidilserinas/metabolismo , Proteínas de Transferencia de Fosfolípidos/metabolismo , Proteínas de Transferencia de Fosfolípidos/genética , Ratones , Ratones Endogámicos C57BL , Resorción Ósea/metabolismo , Resorción Ósea/patología , Resorción Ósea/genética , Diferenciación Celular , Ligando RANK/metabolismo
2.
Nature ; 629(8010): 184-192, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38600378

RESUMEN

Glucocorticoids represent the mainstay of therapy for a broad spectrum of immune-mediated inflammatory diseases. However, the molecular mechanisms underlying their anti-inflammatory mode of action have remained incompletely understood1. Here we show that the anti-inflammatory properties of glucocorticoids involve reprogramming of the mitochondrial metabolism of macrophages, resulting in increased and sustained production of the anti-inflammatory metabolite itaconate and consequent inhibition of the inflammatory response. The glucocorticoid receptor interacts with parts of the pyruvate dehydrogenase complex whereby glucocorticoids provoke an increase in activity and enable an accelerated and paradoxical flux of the tricarboxylic acid (TCA) cycle in otherwise pro-inflammatory macrophages. This glucocorticoid-mediated rewiring of mitochondrial metabolism potentiates TCA-cycle-dependent production of itaconate throughout the inflammatory response, thereby interfering with the production of pro-inflammatory cytokines. By contrast, artificial blocking of the TCA cycle or genetic deficiency in aconitate decarboxylase 1, the rate-limiting enzyme of itaconate synthesis, interferes with the anti-inflammatory effects of glucocorticoids and, accordingly, abrogates their beneficial effects during a diverse range of preclinical models of immune-mediated inflammatory diseases. Our findings provide important insights into the anti-inflammatory properties of glucocorticoids and have substantial implications for the design of new classes of anti-inflammatory drugs.


Asunto(s)
Antiinflamatorios , Glucocorticoides , Inflamación , Macrófagos , Mitocondrias , Succinatos , Animales , Femenino , Humanos , Masculino , Ratones , Antiinflamatorios/farmacología , Carboxiliasas/metabolismo , Carboxiliasas/antagonistas & inhibidores , Ciclo del Ácido Cítrico/efectos de los fármacos , Ciclo del Ácido Cítrico/genética , Citocinas/inmunología , Citocinas/metabolismo , Glucocorticoides/farmacología , Glucocorticoides/metabolismo , Hidroliasas/deficiencia , Hidroliasas/genética , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Macrófagos/citología , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Complejo Piruvato Deshidrogenasa/metabolismo , Receptores de Glucocorticoides/metabolismo , Succinatos/metabolismo , Activación Enzimática/efectos de los fármacos
3.
J Cell Physiol ; 239(2): e31172, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38214117

RESUMEN

Periodontitis is associated with significant alveolar bone loss. Patients with iron overload suffer more frequently from periodontitis, however, the underlying mechanisms remain largely elusive. Here, we investigated the role of transferrin receptor 2 (Tfr2), one of the main regulators of iron homeostasis, in the pathogenesis of periodontitis and the dental phenotype under basal conditions in mice. As Tfr2 suppresses osteoclastogenesis, we hypothesized that deficiency of Tfr2 may exacerbate periodontitis-induced bone loss. Mice lacking Tfr2 (Tfr2-/- ) and wild-type (Tfr2+/+ ) littermates were challenged with experimental periodontitis. Mandibles and maxillae were collected for microcomputed tomography and histology analyses. Osteoclast cultures from Tfr2+/+ and Tfr2-/- mice were established and analyzed for differentiation efficiency, by performing messenger RNA expression and protein signaling pathways. After 8 days, Tfr2-deficient mice revealed a more severe course of periodontitis paralleled by higher immune cell infiltration and a higher histological inflammation index than Tfr2+/+ mice. Moreover, Tfr2-deficient mice lost more alveolar bone compared to Tfr2+/+ littermates, an effect that was only partially iron-dependent. Histological analysis revealed a higher number of osteoclasts in the alveolar bone of Tfr2-deficient mice. In line, Tfr2-deficient osteoclastic differentiation ex vivo was faster and more efficient as reflected by a higher number of osteoclasts, a higher expression of osteoclast markers, and an increased resorptive activity. Mechanistically, Tfr2-deficient osteoclasts showed a higher p38-MAPK signaling and inhibition of p38-MAPK signaling in Tfr2-deficient cells reverted osteoclast formation to Tfr2+/+ levels. Taken together, our data indicate that Tfr2 modulates the inflammatory response in periodontitis thereby mitigating effects on alveolar bone loss.


Asunto(s)
Pérdida de Hueso Alveolar , Periodontitis , Animales , Humanos , Ratones , Pérdida de Hueso Alveolar/genética , Pérdida de Hueso Alveolar/metabolismo , Hierro , Osteoclastos , Periodontitis/genética , Periodontitis/metabolismo , Receptores de Transferrina/genética , Microtomografía por Rayos X , Ratones Endogámicos C57BL , Células Cultivadas
4.
Immunity ; 54(11): 2531-2546.e5, 2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34644537

RESUMEN

Alternatively activated macrophages (AAMs) contribute to the resolution of inflammation and tissue repair. However, molecular pathways that govern their differentiation have remained incompletely understood. Here, we show that uncoupling protein-2-mediated mitochondrial reprogramming and the transcription factor GATA3 specifically controlled the differentiation of pro-resolving AAMs in response to the alarmin IL-33. In macrophages, IL-33 sequentially triggered early expression of pro-inflammatory genes and subsequent differentiation into AAMs. Global analysis of underlying signaling events revealed that IL-33 induced a rapid metabolic rewiring of macrophages that involved uncoupling of the respiratory chain and increased production of the metabolite itaconate, which subsequently triggered a GATA3-mediated AAM polarization. Conditional deletion of GATA3 in mononuclear phagocytes accordingly abrogated IL-33-induced differentiation of AAMs and tissue repair upon muscle injury. Our data thus identify an IL-4-independent and GATA3-dependent pathway in mononuclear phagocytes that results from mitochondrial rewiring and controls macrophage plasticity and the resolution of inflammation.


Asunto(s)
Metabolismo Energético , Inflamación/inmunología , Inflamación/metabolismo , Interleucina-33/metabolismo , Activación de Macrófagos/inmunología , Macrófagos/inmunología , Macrófagos/metabolismo , Biomarcadores , Diferenciación Celular/genética , Diferenciación Celular/inmunología , Inflamación/etiología , Activación de Macrófagos/genética , Mitocondrias/genética , Mitocondrias/inmunología , Mitocondrias/metabolismo , Fagocitos , Transducción de Señal
5.
Sci Rep ; 10(1): 21020, 2020 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-33273570

RESUMEN

Osteoclasts are specialised bone resorbing cells that control both physiological and pathological bone turnover. Functional changes in the differentiation and activity of osteoclasts are accompanied by active metabolic reprogramming. However, the biological significance and the in vivo relevance of these events has remained unclear. Here we show that bone resorption of differentiated osteoclasts heavily relies on increased aerobic glycolysis and glycolysis-derived lactate production. While pharmacological inhibition of glycolysis did not affect osteoclast differentiation or viability, it efficiently blocked bone resorption in vitro and in vivo and consequently ameliorated ovariectomy-induced bone loss. Our experiments thus highlight the therapeutic potential of interfering with osteoclast-intrinsic metabolic pathways as possible strategy for the treatment of diseases characterized by accelerated bone loss.


Asunto(s)
Antimetabolitos/farmacología , Resorción Ósea/metabolismo , Desoxiglucosa/farmacología , Glucólisis , Osteoclastos/metabolismo , Osteoporosis/metabolismo , Animales , Antimetabolitos/uso terapéutico , Resorción Ósea/tratamiento farmacológico , Células Cultivadas , Desoxiglucosa/uso terapéutico , Femenino , Ácido Láctico/metabolismo , Ratones , Ratones Endogámicos C57BL , Osteoclastos/efectos de los fármacos , Osteoporosis/tratamiento farmacológico , Oxígeno/metabolismo
6.
Sci Rep ; 10(1): 8428, 2020 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-32439961

RESUMEN

Bone turnover, which is determined by osteoclast-mediated bone resorption and osteoblast-mediated bone formation, represents a highly energy consuming process. The metabolic requirements of osteoblast differentiation and mineralization, both essential for regular bone formation, however, remain incompletely understood. Here we identify the nuclear receptor peroxisome proliferator-activated receptor (PPAR) δ as key regulator of osteoblast metabolism. Induction of PPARδ was essential for the metabolic adaption and increased rate in mitochondrial respiration necessary for the differentiation and mineralization of osteoblasts. Osteoblast-specific deletion of PPARδ in mice, in turn, resulted in an altered energy homeostasis of osteoblasts, impaired mineralization and reduced bone mass. These data show that PPARδ acts as key regulator of osteoblast metabolism and highlight the relevance of cellular metabolic rewiring during osteoblast-mediated bone formation and bone-turnover.


Asunto(s)
Remodelación Ósea/fisiología , Osteoblastos/metabolismo , Osteogénesis/fisiología , PPAR delta/genética , PPAR delta/metabolismo , Animales , Densidad Ósea/fisiología , Diferenciación Celular , Células Cultivadas , Metabolismo Energético/genética , Metabolismo Energético/fisiología , Células Madre Mesenquimatosas/citología , Ratones , Ratones Noqueados , Mitocondrias/metabolismo , Osteoblastos/citología , Osteoclastos/metabolismo , Fosforilación Oxidativa
7.
Sci Transl Med ; 12(530)2020 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-32051226

RESUMEN

Janus kinase (JAK)-mediated cytokine signaling has emerged as an important therapeutic target for the treatment of inflammatory diseases such as rheumatoid arthritis (RA). Accordingly, JAK inhibitors compose a new class of drugs, among which tofacitinib and baricitinib have been approved for the treatment of RA. Periarticular bone erosions contribute considerably to the pathogenesis of RA. However, although the immunomodulatory aspect of JAK inhibition (JAKi) is well defined, the current knowledge of how JAKi influences bone homeostasis is limited. Here, we assessed the effects of the JAK inhibitors tofacitinib and baricitinib on bone phenotype (i) in mice during steady-state conditions or in mice with bone loss induced by (ii) estrogen-deficiency (ovariectomy) or (iii) inflammation (arthritis) to evaluate whether effects of JAKi on bone metabolism require noninflammatory/inflammatory challenge. In all three models, JAKi increased bone mass, consistent with reducing the ratio of receptor activator of NF-κB ligand/osteoprotegerin in serum. In vitro, effects of tofacitinib and baricitinib on osteoclast and osteoblast differentiation were analyzed. JAKi significantly increased osteoblast function (P < 0.05) but showed no direct effects on osteoclasts. Additionally, mRNA sequencing and ingenuity pathway analyses were performed in osteoblasts exposed to JAKi and revealed robust up-regulation of markers for osteoblast function, such as osteocalcin and Wnt signaling. The anabolic effect of JAKi was illustrated by the stabilization of ß-catenin. In humans with RA, JAKi induced bone-anabolic effects as evidenced by repair of arthritic bone erosions. Results support that JAKi is a potent therapeutic tool for increasing osteoblast function and bone formation.


Asunto(s)
Artritis Reumatoide , Inhibidores de las Cinasas Janus , Animales , Diferenciación Celular , Quinasas Janus , Ratones , Osteoblastos , Osteoclastos
8.
Nat Commun ; 11(1): 431, 2020 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-31969567

RESUMEN

Multinucleated giant cells (MGCs) are implicated in many diseases including schistosomiasis, sarcoidosis and arthritis. MGC generation is energy intensive to enforce membrane fusion and cytoplasmic expansion. Using receptor activator of nuclear factor kappa-Β ligand (RANKL) induced osteoclastogenesis to model MGC formation, here we report RANKL cellular programming requires extracellular arginine. Systemic arginine restriction improves outcome in multiple murine arthritis models and its removal induces preosteoclast metabolic quiescence, associated with impaired tricarboxylic acid (TCA) cycle function and metabolite induction. Effects of arginine deprivation on osteoclastogenesis are independent of mTORC1 activity or global transcriptional and translational inhibition. Arginine scarcity also dampens generation of IL-4 induced MGCs. Strikingly, in extracellular arginine absence, both cell types display flexibility as their formation can be restored with select arginine precursors. These data establish how environmental amino acids control the metabolic fate of polykaryons and suggest metabolic ways to manipulate MGC-associated pathologies and bone remodelling.


Asunto(s)
Arginina/metabolismo , Células Gigantes/inmunología , Animales , Artritis/genética , Artritis/metabolismo , Artritis/fisiopatología , Remodelación Ósea , Ciclo del Ácido Cítrico , Femenino , Células Gigantes/citología , Humanos , Interleucina-4/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Ratones Endogámicos C57BL , Osteoclastos/citología , Osteoclastos/metabolismo , Osteogénesis , Ligando RANK/genética , Ligando RANK/metabolismo
9.
Tissue Eng Part A ; 25(13-14): 1053-1062, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30638150

RESUMEN

IMPACT STATEMENT: The repair of large articular cartilage lesions is still a major challenge. In particular, the fixation of the grafts to the subchondral bone plate represents an unresolved problem. In this work, we present a completely novel concept based on a modular lattice, combining building blocks of different ceramic materials, anchoring pins and space for cell-loaded hydrogels or other scaffold materials. This concept targets not only circumscribed cartilage defects but also large osteoarthritic lesions. It spans the bridge between cell therapy and artificial joint arthroplasty, and thus is of significant medical and socioeconomic impact.


Asunto(s)
Articulaciones/fisiología , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Adulto , Anciano , Anciano de 80 o más Años , Huesos/diagnóstico por imagen , Huesos/efectos de los fármacos , Adhesión Celular/efectos de los fármacos , Comunicación Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Cerámica/farmacología , Colágeno/farmacología , Humanos , Hidrogeles/farmacología , Implantes Experimentales , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Persona de Mediana Edad , Resistencia a la Tracción , Microtomografía por Rayos X
10.
Cell Rep ; 24(1): 169-180, 2018 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-29972778

RESUMEN

Group 2 innate lymphoid cells (ILC2s) were detected in the peripheral blood and the joints of rheumatoid arthritis (RA) patients, serum-induced arthritis (SIA), and collagen-induced arthritis (CIA) using flow cytometry. Circulating ILC2s were significantly increased in RA patients compared with healthy controls and inversely correlated with disease activity. Induction of arthritis in mice led to a fast increase in ILC2 number. To elucidate the role of ILC2 in arthritis, loss- and gain-of-function mouse models for ILC2 were subjected to arthritis. Reduction of ILC2 numbers in RORαcre/GATA3fl/fl and Tie2cre/RORαfl/fl mice significantly exacerbated arthritis. Increasing ILC2 numbers in mice by IL-25/IL-33 mini-circles or IL-2/IL-2 antibody complex and the adoptive transfer of wild-type (WT) ILC2s significantly attenuated arthritis by affecting the initiation phase. In addition, adoptive transfer of IL-4/13-competent WT but not IL-4/13-/- ILC2s and decreased cytokine secretion by macrophages. These data show that ILC2s have immune-regulatory functions in arthritis.


Asunto(s)
Artritis Reumatoide/inmunología , Huesos/patología , Inmunidad Innata , Inflamación/inmunología , Linfocitos/inmunología , Traslado Adoptivo , Animales , Artritis Reumatoide/complicaciones , Artritis Reumatoide/patología , Progresión de la Enfermedad , Humanos , Inflamación/complicaciones , Inflamación/patología , Interleucina-1beta/metabolismo , Interleucina-4/metabolismo , Interleucinas/metabolismo , Macrófagos/metabolismo , Ratones , Factor de Necrosis Tumoral alfa/metabolismo
11.
J Bone Miner Res ; 33(11): 2035-2047, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29949664

RESUMEN

NR4A1 (Nur77 or NGFI-B), an orphan member of the nuclear receptor superfamily, has been identified as a key regulator of the differentiation and function of myeloid, lymphoid, and mesenchymal cells. The detailed role of NR4A1 in bone biology is incompletely understood. Here, we report a role for NR4A1 as novel factor controlling the migration and recruitment of osteoclast precursors during bone remodeling. Myeloid-specific but not osteoblast-specific deletion of NR4A1 resulted in osteopenia due to an increase in the number of bone-lining osteoclasts. Although NR4A1-deficient osteoclast precursors displayed a regular differentiation into mature osteoclasts, they showed a hyper-motile phenotype that was largely dependent on increased osteopontin expression, suggesting that expression of NR4A1 negatively controlled osteopontin-mediated recruitment of osteoclast precursors to the trabecular bone. Pharmacological activation of NR4A1, in turn, inhibited osteopontin expression and osteopontin-dependent migration of osteoclast precursors resulted in reduced abundance of bone-resorbing osteoclasts in vivo as well as in an ameliorated bone loss after ovariectomy in mice. This study identifies NR4A1 as a crucial player in the regulation of osteoclast biology and bone remodeling and highlights this nuclear receptor as a promising target for therapeutic intervention during the treatment of osteoporosis. © 2018 The Authors. Journal of Bone and Mineral Research Published by Wiley Periodicals Inc.


Asunto(s)
Remodelación Ósea , Movimiento Celular , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Osteoclastos/citología , Osteoclastos/metabolismo , Animales , Resorción Ósea/patología , Hueso Esponjoso/metabolismo , Recuento de Células , Diferenciación Celular , Fusión Celular , Eliminación de Gen , Homeostasis , Ratones Endogámicos C57BL , Células Mieloides/metabolismo , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/deficiencia , Osteoblastos/metabolismo , Osteopontina/metabolismo , Ovariectomía , Proteínas Represoras/metabolismo
12.
Biochimie ; 136: 55-58, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-27914902

RESUMEN

Peroxisome proliferator-activated receptors (PPARs) have emerged as key regulators of physiological and immunological processes. Recently, one of their members PPARß/δ has been identified as major player in the maintenance of bone homeostasis, by promoting Wnt signalling activity in osteoblast and mesenchymal stem cells (MSC). PPARß/δ not only controls the fate of MSC but also regulates their immunosuppressive properties by directly modulating their NF-κB activity. In this review, we discuss how the regulation of PPARß/δ provides an innovative strategy for an optimisation of MSC-based therapy.


Asunto(s)
Células Madre Mesenquimatosas/citología , PPAR gamma/fisiología , PPAR-beta/fisiología , Animales , Humanos , Tolerancia Inmunológica , Células Madre Mesenquimatosas/inmunología , Osteogénesis/fisiología
13.
Nat Med ; 21(2): 150-8, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25581517

RESUMEN

Mesenchymal responses are an essential aspect of tissue repair. Failure to terminate this repair process correctly, however, results in fibrosis and organ dysfunction. Therapies that block fibrosis and restore tissue homeostasis are not yet available for clinical use. Here we characterize the nuclear receptor NR4A1 as an endogenous inhibitor of transforming growth factor-ß (TGF-ß) signaling and as a potential target for anti-fibrotic therapies. NR4A1 recruits a repressor complex comprising SP1, SIN3A, CoREST, LSD1, and HDAC1 to TGF-ß target genes, thereby limiting pro-fibrotic TGF-ß effects. Even though temporary upregulation of TGF-ß in physiologic wound healing induces NR4A1 expression and thereby creates a negative feedback loop, the persistent activation of TGF-ß signaling in fibrotic diseases uses AKT- and HDAC-dependent mechanisms to inhibit NR4A1 expression and activation. Small-molecule NR4A1 agonists can overcome this lack of active NR4A1 and inhibit experimentally-induced skin, lung, liver, and kidney fibrosis in mice. Our data demonstrate a regulatory role of NR4A1 in TGF-ß signaling and fibrosis, providing the first proof of concept for targeting NR4A1 in fibrotic diseases.


Asunto(s)
Fibroblastos/metabolismo , Fibrosis Pulmonar Idiopática/metabolismo , Cirrosis Hepática Alcohólica/metabolismo , Hígado/metabolismo , Pulmón/metabolismo , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/fisiología , Esclerodermia Sistémica/metabolismo , Piel/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Adolescente , Adulto , Anciano , Animales , Estudios de Casos y Controles , Células Cultivadas , Proteínas Co-Represoras/metabolismo , Femenino , Fibrosis , Histona Desacetilasa 1/metabolismo , Histona Demetilasas/metabolismo , Humanos , Fibrosis Pulmonar Idiopática/patología , Hígado/patología , Cirrosis Hepática Alcohólica/patología , Pulmón/patología , Masculino , Ratones , Ratones Noqueados , Persona de Mediana Edad , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Proteínas Represoras/metabolismo , Esclerodermia Sistémica/patología , Transducción de Señal , Complejo Correpresor Histona Desacetilasa y Sin3 , Piel/citología , Piel/patología , Factor de Transcripción Sp1/metabolismo , Cicatrización de Heridas , Adulto Joven
14.
Swiss Med Wkly ; 144: w14055, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25474159

RESUMEN

Adopted orphan nuclear receptors, such as peroxisome proliferator-activated receptors (PPARs) and liver X receptors (LXRs), have emerged as key regulators of inflammation and immunity and likewise control skeletal homeostasis. These properties render them attractive targets for the therapy of various inflammatory and autoimmune diseases affecting the musculoskeletal system. This review summarises the current knowledge on the role of these families of receptors during innate and adaptive immunity as well as during the control of bone turnover and discuss the potential use of targeting these molecules during the treatment of chronic diseases such as osteoarthritis, rheumatoid arthritis and osteoporosis.


Asunto(s)
Huesos/fisiología , Receptores Nucleares Huérfanos/metabolismo , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Inmunidad Adaptativa , Remodelación Ósea , Homeostasis , Humanos , Inmunidad Innata , Inflamación/metabolismo , Receptores X del Hígado
15.
J Immunol ; 192(10): 4852-8, 2014 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-24740500

RESUMEN

Uptake of apoptotic cells (ACs) by macrophages ensures the nonimmunogenic clearance of dying cells, as well as the maintenance of self-tolerance to AC-derived autoantigens. Upon ingestion, ACs exert an inhibitory influence on the inflammatory signaling within the phagocyte. However, the molecular signals that mediate these immune-modulatory properties of ACs are incompletely understood. In this article, we show that the phagocytosis of apoptotic thymocytes was enhanced in tissue-resident macrophages where this process resulted in the inhibition of NF-κB signaling and repression of inflammatory cytokines, such as IL-12. In parallel, ACs induced a robust expression of a panel of immediate early genes, which included the Nr4a subfamily of nuclear receptors. Notably, deletion of Nr4a1 interfered with the anti-inflammatory effects of ACs in macrophages and restored both NF-κB signaling and IL-12 expression. Accordingly, Nr4a1 mediated the anti-inflammatory properties of ACs in vivo and was required for maintenance of self-tolerance in the murine model of pristane-induced lupus. Thus, our data point toward a key role for Nr4a1 as regulator of the immune response to ACs and of the maintenance of tolerance to "dying self."


Asunto(s)
Apoptosis/inmunología , Tolerancia Inmunológica/fisiología , Macrófagos Peritoneales/inmunología , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/inmunología , Transducción de Señal/inmunología , Animales , Regulación de la Expresión Génica/genética , Regulación de la Expresión Génica/inmunología , Interleucina-12/genética , Interleucina-12/inmunología , Macrófagos Peritoneales/citología , Ratones , Ratones Noqueados , FN-kappa B/genética , FN-kappa B/inmunología , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Transducción de Señal/genética
16.
Arthritis Rheum ; 65(9): 2310-22, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23784913

RESUMEN

OBJECTIVE: Wnt signaling plays a pivotal role in skeletal development and in the control of cartilage and bone turnover. We have recently shown that the secreted Wnt antagonist Wnt inhibitory factor 1 (WIF-1) is mainly expressed in the upper layers of epiphyseal and articular cartilage and, to a lesser extent, in bone. Nevertheless, WIF-1(-/-) mice develop normally. In light of these findings, we undertook this study to analyze the role of WIF-1 in arthritis. METHODS: Expression analyses for WIF-1 were performed by real-time reverse transcription-polymerase chain reaction (RT-PCR). WIF-1(-/-) and tumor necrosis factor (TNF)-transgenic mice were crossbred, and the progression of arthritis in TNF-transgenic WIF-1(-/-) mice and littermate controls was evaluated. Structural joint damage was analyzed by histologic staining, histomorphometry, and micro-computed tomography. Wnt/ß-catenin signaling was investigated by real-time RT-PCR and immunofluorescence on primary chondrocytes. RESULTS: WIF-1 expression was repressed by TNFα in chondrocytes and osteoblasts and down-regulated in experimental arthritis and in articular cartilage from patients with rheumatoid arthritis. WIF-1 deficiency partially protected TNF-transgenic mice against bone erosion and loss of trabecular bone, probably as a result of less osteoclast activity. In contrast, arthritis-related cartilage damage was aggravated by WIF-1 deficiency, while overexpression of WIF-1 attenuated cartilage degradation in TNF-transgenic mice. In chondrocytes, TNFα stimulated canonical Wnt signaling, which could be blocked by WIF-1, indicating a direct effect of TNFα and WIF-1 on Wnt signaling in this system. CONCLUSION: These data suggest that WIF-1 may take part in the fine-tuning of cartilage and bone turnover, promoting the balance of cartilage versus bone anabolism.


Asunto(s)
Artritis Experimental/metabolismo , Huesos/metabolismo , Cartílago/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Artritis Experimental/genética , Artritis Experimental/patología , Huesos/patología , Cartílago/patología , Cartílago Articular/metabolismo , Cartílago Articular/patología , Condrocitos/metabolismo , Condrocitos/patología , Progresión de la Enfermedad , Regulación hacia Abajo , Proteínas de la Matriz Extracelular/genética , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Ratones , Ratones Noqueados , Ratones Transgénicos , Factor de Necrosis Tumoral alfa/genética
17.
Nat Med ; 19(5): 608-13, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23542786

RESUMEN

Peroxisome proliferator-activated receptors (PPARs) act as metabolic sensors and central regulators of fat and glucose homeostasis. Furthermore, PPARγ has been implicated as major catabolic regulator of bone mass in mice and humans. However, a potential involvement of other PPAR subtypes in the regulation of bone homeostasis has remained elusive. Here we report a previously unrecognized role of PPARß/δ as a key regulator of bone turnover and the crosstalk between osteoblasts and osteoclasts. In contrast to activation of PPARγ, activation of PPARß/δ amplified Wnt-dependent and ß-catenin-dependent signaling and gene expression in osteoblasts, resulting in increased expression of osteoprotegerin (OPG) and attenuation of osteoblast-mediated osteoclastogenesis. Accordingly, PPARß/δ-deficient mice had lower Wnt signaling activity, lower serum concentrations of OPG, higher numbers of osteoclasts and osteopenia. Pharmacological activation of PPARß/δ in a mouse model of postmenopausal osteoporosis led to normalization of the altered ratio of tumor necrosis factor superfamily, member 11 (RANKL, also called TNFSF11) to OPG, a rebalancing of bone turnover and the restoration of normal bone density. Our findings identify PPARß/δ as a promising target for an alternative approach in the treatment of osteoporosis and related diseases.


Asunto(s)
Huesos/metabolismo , PPAR delta/metabolismo , PPAR-beta/metabolismo , Proteínas Wnt/metabolismo , Vía de Señalización Wnt , Alelos , Animales , Enfermedades Óseas Metabólicas/metabolismo , Resorción Ósea , Femenino , Glucosa/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Osteoblastos/metabolismo , Osteoclastos/citología , Osteoprotegerina/metabolismo , Ligando RANK/metabolismo , Factores de Tiempo , beta Catenina/metabolismo
18.
Ann Rheum Dis ; 72(5): 761-8, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-22975756

RESUMEN

OBJECTIVES: Autophagy is a homeostatic process to recycle dispensable and damaged cell organelles. Dysregulation of autophagic pathways has recently been implicated in the pathogenesis of various diseases. Here, we investigated the role of autophagy during joint destruction in arthritis. METHODS: Autophagy in osteoclasts was analysed in vitro and ex vivo by transmission electron microscopy, Western blotting and immunohistochemistry for Beclin1 and Atg7. Small molecule inhibitors, LysMCre-mediated knockout of Atg7 and lentiviral overexpression of Beclin1 were used to modulate autophagy in vitro and in vivo. Osteoclast differentiation markers were quantified by real-time PCR. The extent of bone and cartilage destruction was analysed in human tumour necrosis factor α transgenic (hTNFα tg) mice after adoptive transfer with myeloid specific Atg7-deficient bone marrow. RESULTS: Autophagy was activated in osteoclasts of human rheumatoid arthritis (RA) showing increased expression of Beclin1 and Atg7. TNFα potently induced the expression of autophagy-related genes and activated autophagy in vitro and in vivo. Activation of autophagy by overexpression of Beclin1-induced osteoclastogenesis and enhanced the resorptive capacity of cultured osteoclasts, whereas pharmacologic or genetic inactivation of autophagy prevented osteoclast differentiation. Arthritic hTNFα tg mice transplanted with Atg7(fl/fl)×LysMCre(+) bone marrow cells (BMC) showed reduced numbers of osteoclasts and were protected from TNFα-induced bone erosion, proteoglycan loss and chondrocyte death. CONCLUSIONS: These findings demonstrate that autophagy is activated in RA in a TNFα-dependent manner and regulates osteoclast differentiation and bone resorption. We thus provide evidence for a central role of autophagy in joint destruction in RA.


Asunto(s)
Artritis Experimental/inmunología , Artritis Experimental/patología , Autofagia/inmunología , Articulaciones/patología , Factor de Necrosis Tumoral alfa/inmunología , Traslado Adoptivo , Animales , Proteínas Reguladoras de la Apoptosis/genética , Proteína 7 Relacionada con la Autofagia , Beclina-1 , Biomarcadores , Trasplante de Médula Ósea , Resorción Ósea/inmunología , Resorción Ósea/patología , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Electrónica de Transmisión , Proteínas Asociadas a Microtúbulos/genética , Osteoclastos/inmunología , Osteoclastos/patología , Osteoclastos/ultraestructura , Factor de Necrosis Tumoral alfa/genética
19.
J Bone Miner Res ; 27(12): 2442-51, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22806960

RESUMEN

Osteoporosis is characterized by enhanced differentiation of bone-resorbing osteoclasts, resulting in a rapid loss of functional trabecular bone. Bone-forming osteoblasts and osteoblast-derived osteocytes perform a key role in the regulation of osteoclast development by providing both the pro-osteoclastogenic cytokine receptor activator of NF-κB ligand (RANKL) and its natural decoy receptor osteoprotegerin (OPG). By regulating the RANKL/OPG ratio, osteoblasts hence determine the rate of both osteoclast differentiation and bone turnover. Here, we describe a novel role for liver X receptors (LXRs) during the crosstalk of bone-forming osteoblasts and bone-resorbing osteoclasts. By using a system of osteoblast/osteoclast cocultures, we identify LXRs as regulator of RANKL expression and the RANKL/OPG ratio in osteoblasts. Activation of LXRs drastically reduced the RANKL/OPG ratio and interfered with osteoblast-mediated osteoclast differentiation in vitro. During an ovariectomy (OVX)-induced model of postmenopausal osteoporosis, the application of an LXR agonist shifted the RANKL/OPG ratio in vivo, ameliorated the enhanced osteoclast differentiation, and provided complete protection from OVX-induced bone loss. These results reveal an unexpected involvement of LXRs in the regulation of bone turnover and highlight a potential role for LXRs as novel targets in the treatment of osteoporosis and related diseases.


Asunto(s)
Receptores Nucleares Huérfanos/fisiología , Osteoblastos/fisiología , Osteoclastos/fisiología , Animales , Benzoatos/farmacología , Bencilaminas/farmacología , Resorción Ósea/tratamiento farmacológico , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Técnicas de Cocultivo , Femenino , Humanos , Receptores X del Hígado , Ratones , Receptores Nucleares Huérfanos/agonistas , Receptores Nucleares Huérfanos/uso terapéutico , Osteoblastos/citología , Osteoporosis/tratamiento farmacológico , Osteoprotegerina/metabolismo , Ovariectomía , Ligando RANK/metabolismo
20.
J Cell Sci ; 125(Pt 9): 2160-71, 2012 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-22344264

RESUMEN

Tumor necrosis factor (TNF)-α is a key cytokine regulator of bone and mediates inflammatory bone loss. The molecular signaling that regulates bone loss downstream of TNF-α is poorly defined. Here, we demonstrate that inactivating the pro-osteoblastogenic ERK-activated ribosomal S6 kinase RSK2 leads to a drastically accelerated and amplified systemic bone loss in mice ectopically expressing TNF-α [human TNF transgenic (hTNFtg) mice]. The phenotype is associated with a decrease in bone formation because of fewer osteoblasts as well as a drastically increased bone destruction by osteoclasts. The molecular basis of this phenotype is a cell autonomous increased sensitivity of osteoblasts and osteocytes to TNF-induced apoptosis combined with an enhancement of their osteoclast supportive activity. Thus, RSK2 exerts a strong negative regulatory loop on TNF-induced bone loss.


Asunto(s)
Resorción Ósea/metabolismo , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Animales , Apoptosis/genética , Resorción Ósea/genética , Resorción Ósea/patología , Huesos/metabolismo , Huesos/patología , Expresión Génica , Humanos , Masculino , Ratones , Ratones Transgénicos , Osteoblastos/metabolismo , Osteoblastos/patología , Osteoclastos/metabolismo , Osteoclastos/patología , Proteínas Quinasas S6 Ribosómicas 90-kDa/genética , Transducción de Señal , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA