Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Virol J ; 21(1): 125, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38831469

RESUMEN

BACKGROUND: Merkel Cell Carcinoma (MCC) is an aggressive skin cancer that is three times deadlier than melanoma. In 2008, it was found that 80% of MCC cases are caused by the genomic integration of a novel polyomavirus, Merkel Cell Polyomavirus (MCPyV), and the expression of its small and truncated large tumor antigens (ST and LT-t, respectively). MCPyV belongs to a family of human polyomaviruses; however, it is the only one with a clear association to cancer. METHODS: To investigate the role and mechanisms of various polyomavirus tumor antigens in cellular transformation, Rat-2 and 293A cells were transduced with pLENTI MCPyV LT-t, MCPyV ST, TSPyV ST, HPyV7 ST, or empty pLENTI and assessed through multiple transformation assays, and subcellular fractionations. One-way ANOVA tests were used to assess statistical significance. RESULTS: Soft agar, proliferation, doubling time, glucose uptake, and serum dependence assays confirmed ST to be the dominant transforming protein of MCPyV. Furthermore, it was found that MCPyV ST is uniquely transforming, as the ST antigens of other non-oncogenic human polyomaviruses such as Trichodysplasia Spinulosa-Associated Polyomavirus (TSPyV) and Human Polyomavirus 7 (HPyV7) were not transforming when similarly assessed. Identification of structural dissimilarities between transforming and non-transforming tumor antigens revealed that the uniquely transforming domain(s) of MCPyV ST are likely located within the structurally dissimilar loops of the MCPyV ST unique region. Of all known MCPyV ST cellular interactors, 62% are exclusively or transiently nuclear, suggesting that MCPyV ST localizes to the nucleus despite the absence of a canonical nuclear localization signal. Indeed, subcellular fractionations confirmed that MCPyV ST could achieve nuclear localization through a currently unknown, regulated mechanism independent of its small size, as HPyV7 and TSPyV ST proteins were incapable of nuclear translocation. Although nuclear localization was found to be important for several transforming properties of MCPyV ST, some properties were also performed by a cytoplasmic sequestered MCPyV ST, suggesting that MCPyV ST may perform different transforming functions in individual subcellular compartments. CONCLUSIONS: Together, these data further elucidate the unique differences between MCPyV ST and other polyomavirus ST proteins necessary to understand MCPyV as the only known human oncogenic polyomavirus.


Asunto(s)
Antígenos Virales de Tumores , Núcleo Celular , Poliomavirus de Células de Merkel , Poliomavirus de Células de Merkel/genética , Poliomavirus de Células de Merkel/fisiología , Humanos , Antígenos Virales de Tumores/genética , Antígenos Virales de Tumores/metabolismo , Núcleo Celular/virología , Núcleo Celular/metabolismo , Animales , Ratas , Señales de Localización Nuclear , Carcinoma de Células de Merkel/virología , Línea Celular , Neoplasias Cutáneas/virología , Neoplasias Cutáneas/patología , Transformación Celular Viral , Antígenos Transformadores de Poliomavirus/genética , Antígenos Transformadores de Poliomavirus/metabolismo , Infecciones por Polyomavirus/virología
2.
bioRxiv ; 2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38293082

RESUMEN

Background: Merkel Cell Carcinoma (MCC) is an aggressive skin cancer that is three times deadlier than melanoma. In 2008, it was found that 80% of MCC cases are caused by the genomic integration of a novel polyomavirus, Merkel Cell Polyomavirus (MCPyV), and the expression of its small and truncated large tumor antigens (ST and LT-t, respectively). MCPyV belongs to a family of human polyomaviruses; however, it is the only one with a clear association to cancer. Methods: To investigate the role and mechanisms of various polyomavirus tumor antigens in cellular transformation, Rat-2, 293A, and human foreskin fibroblasts were transduced with pLENTI MCPyV LT-t, MCPyV ST, TSPyV ST, HPyV7 ST, or empty pLENTI and assessed through multiple transformation assays, and subcellular fractionations. One-way ANOVA tests were used to assess statistical significance. Results: Soft agar, proliferation, doubling time, glucose uptake, and serum dependence assays confirmed ST to be the dominant transforming protein of MCPyV. Furthermore, it was found that MCPyV ST is uniquely transforming, as the ST antigens of other non-oncogenic human polyomaviruses such as Trichodysplasia Spinulosa Polyomavirus (TSPyV) and Human Polyomavirus 7 (HPyV7) were not transforming when similarly assessed. Identification of structural dissimilarities between transforming and non-transforming tumor antigens revealed that the uniquely transforming domain(s) of MCPyV ST are likely located within the structurally dissimilar loops of the MCPyV ST unique region. Of all known MCPyV ST cellular interactors, 62% are exclusively or transiently nuclear, suggesting that MCPyV ST localizes to the nucleus despite the absence of a canonical nuclear localization signal. Indeed, subcellular fractionations confirmed that MCPyV ST could achieve nuclear localization through a currently unknown, regulated mechanism independent of its small size, as HPyV7 and TSPyV ST proteins were incapable of nuclear translocation. Although nuclear localization was found to be important for several transforming properties of MCPyV ST, some properties were also performed by a cytoplasmic sequestered MCPyV ST, suggesting that MCPyV ST may perform different transforming functions in individual subcellular compartments. Conclusions: Together, these data further elucidate the unique differences between MCPyV ST and other polyomavirus ST proteins necessary to understand MCPyV as the only known human oncogenic polyomavirus.

3.
J Biomech ; 42(14): 2313-7, 2009 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-19698946

RESUMEN

Previous studies of methods for stimulating the individual muscles composing the quadriceps femoris have not considered the structural features of a subject's knee joint. In this study, we compared the ratios of the individual muscles composing the quadriceps between subjects with different knee alignments using magnetic resonance (MR) imaging. A total of 18 healthy males were examined: 6 normal knees (age, 23.0+/-0.6 yr; femorotibial angle (FTA), 176.8+/-0.4 degrees), 6 genu varum (age, 21.8+/-2.9 yr; FTA, 181.7+/-2.6 degrees) and 6 genu valgum (age, 21.0+/-1.6 yr; FTA, 172.3+/-1.5 degrees). The cross-sectional areas (CSAs) of quadriceps muscles were obtained by MR imaging of the entire left thigh. The CSAs of the vastus lateralis (VL), rectus femoris (RF), vastus medialis (VM) and vastus intermedius (VI) muscles were obtained by MR imaging of the entire left thigh in a supine position. The VM/VL ratio was also obtained by dividing the CSA of the VM by that of the VL and compared among the three groups of subjects with different knee alignments. The genu varum group showed a significantly higher %CSA of VM in the CSA of the quadriceps (VM/Quad) (49.0+/-2.6%) than values for the other two groups. The genu valgum group showed significantly higher values of RF/Quad (15.2+/-2.1%) and VL/Quad (40.6+/-4.0%) than the other groups. The VM/VL ratio was significantly higher in the genu varum than in values for the other two groups. This difference in CSA, in respect to knee alignment, may be considered when devising muscle training programs.


Asunto(s)
Articulación de la Rodilla/anomalías , Articulación de la Rodilla/patología , Modelos Anatómicos , Músculo Esquelético/patología , Adulto , Anatomía Transversal , Humanos , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA