Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Sci Data ; 11(1): 66, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38216606

RESUMEN

Barley genomic resources are increasing rapidly, with the publication of a barley pangenome as one of the latest developments. Two-row spring barley cultivars are intensely studied as they are the source of high-quality grain for malting and distilling. Here we provide data from a European two-row spring barley population containing 209 different genotypes registered for the UK market between 1830 to 2014. The dataset encompasses RNA-sequencing data from six different tissues across a range of barley developmental stages, phenotypic datasets from two consecutive years of field-grown trials in the United Kingdom, Germany and the USA; and whole genome shotgun sequencing from all cultivars, which was used to complement the RNA-sequencing data for variant calling. The outcomes are a filtered SNP marker file, a phenotypic database and a large gene expression dataset providing a comprehensive resource which allows for downstream analyses like genome wide association studies or expression associations.


Asunto(s)
Genoma de Planta , Hordeum , Estudio de Asociación del Genoma Completo , Genómica , Genotipo , Hordeum/genética , ARN
2.
Theor Appl Genet ; 136(8): 174, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37477711

RESUMEN

KEY MESSAGE: Selection over 70 years has led to almost complete fixation of a haplotype spanning ~ 250 Mbp of chomosome 5H in European two-rowed spring barleys, possibly originating from North Africa. Plant breeding and selection have shaped the genetic composition of modern crops over the past decades and centuries and have led to great improvements in agronomic and quality traits. Knowledge of the genetic composition of breeding germplasm is essential to make informed decisions in breeding programs. In this study, we characterized the structure and composition of 209 barley cultivars representative of the European two-rowed spring barley germplasm of the past 190 years. Utilizing high-density SNP marker data, we identified a distinct centromeric haplotype spanning a ~ 250 Mbp large region on chromosome 5H which likely was first introduced into the European breeding germplasm in the early to mid-twentieth century and has been non-recombining and under strong positive selection over the past 70 years. Almost all cultivars in our panel that were released after 2000 carry this new haplotype, suggesting that this region carries one or several genes conferring highly beneficial traits. Using the global barley collection of the German Federal ex situ gene bank at IPK Gatersleben, we found the new haplotype at high frequencies in six-rowed spring-type landraces from Northern Africa, from which it may have been introduced into modern European barley germplasm via southern European landraces. The presence of a 250 Mbp genomic region characterized by lack of recombination and high levels of fixation in modern barley germplasm has substantial implications for the genetic diversity of the modern barley germplasm and for barley breeding.


Asunto(s)
Hordeum , Haplotipos , Hordeum/genética , Fitomejoramiento , Fenotipo , Cromosomas
3.
Nat Commun ; 13(1): 6050, 2022 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-36229435

RESUMEN

Faced with terrestrial threats, land plants seal their aerial surfaces with a lipid-rich cuticle. To breathe, plants interrupt their cuticles with adjustable epidermal pores, called stomata, that regulate gas exchange, and develop other specialised epidermal cells such as defensive hairs. Mechanisms coordinating epidermal features remain poorly understood. Addressing this, we studied two loci whose allelic variation causes both cuticular wax-deficiency and misarranged stomata in barley, identifying the underlying genes, Cer-g/ HvYDA1, encoding a YODA-like (YDA) MAPKKK, and Cer-s/ HvBRX-Solo, encoding a single BREVIS-RADIX (BRX) domain protein. Both genes control cuticular integrity, the spacing and identity of epidermal cells, and barley's distinctive epicuticular wax blooms, as well as stomatal patterning in elevated CO2 conditions. Genetic analyses revealed epistatic and modifying relationships between HvYDA1 and HvBRX-Solo, intimating that their products participate in interacting pathway(s) linking epidermal patterning with cuticular properties in barley. This may represent a mechanism for coordinating multiple adaptive features of the land plant epidermis in a cultivated cereal.


Asunto(s)
Hordeum , Dióxido de Carbono/metabolismo , Regulación de la Expresión Génica de las Plantas , Hordeum/genética , Hordeum/metabolismo , Quinasas Quinasa Quinasa PAM/metabolismo , Epidermis de la Planta/metabolismo , Ceras/metabolismo
4.
Front Plant Sci ; 13: 883139, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36160970

RESUMEN

(1,3;1,4)-ß-Glucan is a non-cellulosic polysaccharide required for correct barley grain fill and plant development, with industrial relevance in the brewing and the functional food sector. Barley grains contain higher levels of (1,3;1,4)-ß-glucan compared to other small grain cereals and this influences their end use, having undesirable effects on brewing and distilling and beneficial effects linked to human health. HvCslF6 is the main gene contributing to (1,3;1,4)-ß-glucan biosynthesis in the grain. Here, the transcriptional regulation of HvCslF6 was investigated using an in-silico analysis of transcription factor binding sites (TFBS) in its putative promoter, and functional characterization in a barley protoplast transient expression system. Based on TFBS predictions, TF classes AP2/ERF, MYB, and basic helix-loop-helix (bHLH) were over-represented within a 1,000 bp proximal HvCslF6 promoter region. Dual luciferase assays based on multiple HvCslF6 deletion constructs revealed the promoter fragment driving HvCslF6 expression. Highest HvCslF6 promoter activity was narrowed down to a 51 bp region located -331 bp to -382 bp upstream of the start codon. We combined this with TFBS predictions to identify two MYB TFs: HvMYB61 and HvMYB46/83 as putative activators of HvCslF6 expression. Gene network analyses assigned HvMYB61 to the same co-expression module as HvCslF6 and other primary cellulose synthases (HvCesA1, HvCesA2, and HvCesA6), whereas HvMYB46/83 was assigned to a different module. Based on RNA-seq expression during grain development, HvMYB61 was cloned and tested in the protoplast system. The transient over-expression of HvMYB61 in barley protoplasts suggested a positive regulatory effect on HvCslF6 expression.

5.
Front Plant Sci ; 13: 965217, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36035701

RESUMEN

We report a novel approach for establishing the number and position of CO events in individual homozygous inbred plants by combining low level EMS mutagenesis, speed breeding, whole genome shotgun sequencing and sliding window analysis of the induced molecular variant data. We demonstrate the approach by exploring CO frequency and distribution in self-fertilised progeny of the inbred barley cultivar Bowman and compare these observations to similar data obtained from a Bowman nearly isogenic line (BW230 Hvmlh3) containing a mutation in the DNA mismatch repair gene HvMLH3. We have previously shown that Hvmlh3 decreases both plant fertility and recombination by ~50%. We compare our results to those from previously published traditional genetic analysis of F3 families derived from multiple F2 lines containing WT or mutant alleles of HvMLH3, revealing a high level of correspondence between analyses. We discuss possible applications of the approach in streamlining the assessment of recombination in plant meiosis research.

6.
Plant J ; 111(6): 1580-1594, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35834607

RESUMEN

The distribution of recombination events along large cereal chromosomes is uneven and is generally restricted to gene-rich telomeric ends. To understand how the lack of recombination affects diversity in the large pericentromeric regions, we analysed deep exome capture data from a final panel of 815 Hordeum vulgare (barley) cultivars, landraces and wild barleys, sampled from across their eco-geographical ranges. We defined and compared variant data across the pericentromeric and non-pericentromeric regions, observing a clear partitioning of diversity both within and between chromosomes and germplasm groups. Dramatically reduced diversity was found in the pericentromeres of both cultivars and landraces when compared with wild barley. We observed a mixture of completely and partially differentiated single-nucleotide polymorphisms (SNPs) between domesticated and wild gene pools, suggesting that domesticated gene pools were derived from multiple wild ancestors. Patterns of genome-wide linkage disequilibrium, haplotype block size and number, and variant frequency within blocks showed clear contrasts among individual chromosomes and between cultivars and wild barleys. Although most cultivar chromosomes shared a single major pericentromeric haplotype, chromosome 7H clearly differentiated the two-row and six-row types associated with different geographical origins. Within the pericentromeric regions we identified 22 387 non-synonymous SNPs, 92 of which were fixed for alternative alleles in cultivar versus wild accessions. Surprisingly, only 29 SNPs found exclusively in the cultivars were predicted to be 'highly deleterious'. Overall, our data reveal an unconventional pericentromeric genetic landscape among distinct barley gene pools, with different evolutionary processes driving domestication and diversification.


Asunto(s)
Hordeum , Cromosomas , Domesticación , Hordeum/genética , Desequilibrio de Ligamiento/genética
7.
BMC Bioinformatics ; 23(1): 214, 2022 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-35668357

RESUMEN

BACKGROUND: Plant breeding and crop research rely on experimental phenotyping trials. These trials generate data for large numbers of traits and plant varieties that needs to be captured efficiently and accurately to support further research and downstream analysis. Traditionally scored by hand, phenotypic data is nowadays collected using spreadsheets or specialized apps. While many solutions exist, which increase efficiency and reduce errors, none offer the same familiarity as printed field plans which have been used for decades and offer an intuitive overview over the trial setup, previously recorded data and plots still requiring scoring. RESULTS: We introduce GridScore which utilizes cutting-edge web technologies to reproduce the familiarity of printed field plans while enhancing the phenotypic data collection process by adding advanced features like georeferencing, image tagging and speech recognition. GridScore is a cross-platform open-source plant phenotyping app that combines barcode-based systems with a guided data collection approach while offering a top-down view onto the data collected in a field layout. GridScore is compared to existing tools across a wide spectrum of criteria including support for barcodes, multiple platforms, and visualizations. CONCLUSION: Compared to its competition, GridScore shows strong performance across the board offering a complete manual phenotyping experience.


Asunto(s)
Productos Agrícolas , Fitomejoramiento , Recolección de Datos , Fenotipo
8.
Plant J ; 111(4): 1183-1202, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35704392

RESUMEN

Accurate characterisation of splice junctions (SJs) as well as transcription start and end sites in reference transcriptomes allows precise quantification of transcripts from RNA-seq data, and enables detailed investigations of transcriptional and post-transcriptional regulation. Using novel computational methods and a combination of PacBio Iso-seq and Illumina short-read sequences from 20 diverse tissues and conditions, we generated a comprehensive and highly resolved barley reference transcript dataset from the European 2-row spring barley cultivar Barke (BaRTv2.18). Stringent and thorough filtering was carried out to maintain the quality and accuracy of the SJs and transcript start and end sites. BaRTv2.18 shows increased transcript diversity and completeness compared with an earlier version, BaRTv1.0. The accuracy of transcript level quantification, SJs and transcript start and end sites have been validated extensively using parallel technologies and analysis, including high-resolution reverse transcriptase-polymerase chain reaction and 5'-RACE. BaRTv2.18 contains 39 434 genes and 148 260 transcripts, representing the most comprehensive and resolved reference transcriptome in barley to date. It provides an important and high-quality resource for advanced transcriptomic analyses, including both transcriptional and post-transcriptional regulation, with exceptional resolution and precision.


Asunto(s)
Hordeum , Transcriptoma , Perfilación de la Expresión Génica/métodos , Hordeum/genética , RNA-Seq , Análisis de Secuencia de ARN/métodos , Transcriptoma/genética
9.
Methods Mol Biol ; 2484: 291-311, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35461459

RESUMEN

RNA sequencing (RNA-seq) data is by now the most common method to study differential gene expression. Here we present a pipeline from RNA-seq generation to analysis with examples based on our own barley anther and meiocyte transcriptome. The bioinformatics pipeline will give everyone, from a beginner to a more experienced user, the possibility to analyze their datasets and identify significantly differentially expressed genes. It also allows differential alternative splicing analysis which will become increasingly common due to the high regulatory impact on the gene expression. We describe use of the Galaxy interface for RNA-seq read quantification and the 3D RNA-seq app for the downstream data analysis.


Asunto(s)
Hordeum , Secuencia de Bases , Análisis de Datos , Perfilación de la Expresión Génica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Hordeum/genética , Hordeum/metabolismo , ARN/genética , Análisis de Secuencia de ARN , Transcriptoma
10.
J Exp Bot ; 73(5): 1464-1482, 2022 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-34758083

RESUMEN

Flowering plants reproduce sexually by combining a haploid male and female gametophyte during fertilization. Male gametophytes are localized in the anthers, each containing reproductive (meiocyte) and non-reproductive tissue necessary for anther development and maturation. Meiosis, where chromosomes pair and exchange their genetic material during a process called recombination, is one of the most important and sensitive stages in breeding, ensuring genetic diversity. Most anther development studies have focused on transcript variation, but very few have been correlated with protein abundance. Taking advantage of a recently published barley anther transcriptomic (BAnTr) dataset and a newly developed sensitive mass spectrometry-based approach to analyse the barley anther proteome, we conducted high-resolution mass spectrometry analysis of barley anthers, collected at six time points and representing their development from pre-meiosis to metaphase. Each time point was carefully staged using immunocytology, providing a robust and accurate staging mirroring our previous BAnTr dataset. We identified >6100 non-redundant proteins including 82 known and putative meiotic proteins. Although the protein abundance was relatively stable throughout prophase I, we were able to quantify the dynamic variation of 336 proteins. We present the first quantitative comparative proteomics study of barley anther development during meiotic prophase I when the important process of homologous recombination is taking place.


Asunto(s)
Hordeum , Proteoma , Flores , Hordeum/genética , Hordeum/metabolismo , Meiosis , Profase Meiótica I , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteoma/metabolismo
11.
Front Plant Sci ; 12: 706560, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34868104

RESUMEN

Plant breeding relies on the meiotic recombination or crossing over to generate the new combinations of the alleles along and among the chromosomes. However, crossing over is constrained in the crops such as barley by a combination of the low frequency and biased distribution. In this study, we attempted to identify the genes that limit the recombination by performing a suppressor screen for the restoration of fertility to the semi-fertile barley mutant desynaptic10 (des10), carrying a mutation in the barley ortholog of MutL-Homolog 3 (HvMLH3), a member of the MutL-homolog (MLH) family of DNA mismatch repair genes. des10 mutants exhibit reduced recombination and fewer chiasmata, resulting in the loss of obligate crossovers (COs) leading to chromosome mis-segregation. We identified several candidate suppressor lines and confirmed their restored fertility in an Hvmlh3 background in the subsequent generations. We focus on one of the candidate suppressor lines, SuppLine2099, which showed the most complete restoration of fertility. We characterized this line by using a target-sequence enrichment and sequencing (TENSEQ) capture array representing barley orthologs of 46 meiotic genes. We found that SuppLine2099 contained a C/T change in the anti-CO gene RecQ-like helicase 4 (RECQL4) resulting in the substitution of a non-polar glycine to a polar aspartic acid (G700D) amino acid in the conserved helicase domain. Single nucleotide polymorphism (SNP) genotyping of F3 populations revealed a significant increase in the recombination frequency in lines with Hvrecql4 in the Hvmlh3 background that was associated with the restoration of fertility. The genotyping also indicated that there was nearly double the recombination levels in homozygous Hvrecql4 lines compared to the wild type (WT). However, we did not observe any significant change in the distribution of CO events. Our results confirm the anti-CO role of RECQL4 in a large genome cereal and establish the possibility of testing the utility of increasing recombination in the context of traditional crop improvement.

12.
Front Plant Sci ; 12: 745070, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34659314

RESUMEN

Programmed meiotic DNA double-strand breaks (DSBs), necessary for proper chromosomal segregation and viable gamete formation, are repaired by homologous recombination (HR) as crossovers (COs) or non-crossovers (NCOs). The mechanisms regulating the number and distribution of COs are still poorly understood. The regulator of telomere elongation helicase 1 (RTEL1) DNA helicase was previously shown to enforce the number of meiotic COs in Caenorhabditis elegans but its function in plants has been studied only in the vegetative phase. Here, we characterised barley RTEL1 gene structure and expression using RNA-seq data previously obtained from vegetative and reproductive organs and tissues. Using RNAi, we downregulated RTEL1 expression specifically in reproductive tissues and analysed its impact on recombination using a barley 50k iSelect SNP Array. Unlike in C. elegans, in a population segregating for RTEL1 downregulated by RNAi, high resolution genome-wide genetic analysis revealed a significant increase of COs at distal chromosomal regions of barley without a change in their total number. Our data reveal the important role of RTEL1 helicase in plant meiosis and control of recombination.

13.
J Exp Bot ; 72(7): 2383-2402, 2021 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-33421064

RESUMEN

We profiled the grain oligosaccharide content of 154 two-row spring barley genotypes and quantified 27 compounds, mainly inulin- and neoseries-type fructans, showing differential abundance. Clustering revealed two profile groups where the 'high' set contained greater amounts of sugar monomers, sucrose, and overall fructans, but lower fructosylraffinose. A genome-wide association study (GWAS) identified a significant association for the variability of two fructan types: neoseries-DP7 and inulin-DP9, which showed increased strength when applying a novel compound ratio-GWAS approach. Gene models within this region included three known fructan biosynthesis genes (fructan:fructan 1-fructosyltransferase, sucrose:sucrose 1-fructosyltransferase, and sucrose:fructan 6-fructosyltransferase). Two other genes in this region, 6(G)-fructosyltransferase and vacuolar invertase1, have not previously been linked to fructan biosynthesis and showed expression patterns distinct from those of the other three genes, including exclusive expression of 6(G)-fructosyltransferase in outer grain tissues at the storage phase. From exome capture data, several single nucleotide polymorphisms related to inulin- and neoseries-type fructan variability were identified in fructan:fructan 1-fructosyltransferase and 6(G)-fructosyltransferase genes. Co-expression analyses uncovered potential regulators of fructan biosynthesis including transcription factors. Our results provide the first scientific evidence for the distinct biosynthesis of neoseries-type fructans during barley grain maturation and reveal novel gene candidates likely to be involved in the differential biosynthesis of various types of fructan in barley.


Asunto(s)
Hexosiltransferasas , Hordeum , Secuencia de Aminoácidos , Fructanos , Estudio de Asociación del Genoma Completo , Hexosiltransferasas/genética , Hexosiltransferasas/metabolismo , Hordeum/genética , Hordeum/metabolismo , Vacuolas/metabolismo
14.
Nature ; 588(7837): 284-289, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33239781

RESUMEN

Genetic diversity is key to crop improvement. Owing to pervasive genomic structural variation, a single reference genome assembly cannot capture the full complement of sequence diversity of a crop species (known as the 'pan-genome'1). Multiple high-quality sequence assemblies are an indispensable component of a pan-genome infrastructure. Barley (Hordeum vulgare L.) is an important cereal crop with a long history of cultivation that is adapted to a wide range of agro-climatic conditions2. Here we report the construction of chromosome-scale sequence assemblies for the genotypes of 20 varieties of barley-comprising landraces, cultivars and a wild barley-that were selected as representatives of global barley diversity. We catalogued genomic presence/absence variants and explored the use of structural variants for quantitative genetic analysis through whole-genome shotgun sequencing of 300 gene bank accessions. We discovered abundant large inversion polymorphisms and analysed in detail two inversions that are frequently found in current elite barley germplasm; one is probably the product of mutation breeding and the other is tightly linked to a locus that is involved in the expansion of geographical range. This first-generation barley pan-genome makes previously hidden genetic variation accessible to genetic studies and breeding.


Asunto(s)
Cromosomas de las Plantas/genética , Genoma de Planta/genética , Hordeum/genética , Internacionalidad , Mutación , Fitomejoramiento , Inversión Cromosómica/genética , Mapeo Cromosómico , Sitios Genéticos/genética , Genotipo , Hordeum/clasificación , Polimorfismo Genético/genética , Estándares de Referencia , Banco de Semillas , Inversión de Secuencia , Secuenciación Completa del Genoma
15.
Commun Biol ; 3(1): 258, 2020 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-32444849

RESUMEN

During plant growth, sodium (Na+) in the soil is transported via the xylem from the root to the shoot. While excess Na+ is toxic to most plants, non-toxic concentrations have been shown to improve crop yields under certain conditions, such as when soil K+ is low. We quantified grain Na+ across a barley genome-wide association study panel grown under non-saline conditions and identified variants of a Class 1 HIGH-AFFINITY-POTASSIUM-TRANSPORTER (HvHKT1;5)-encoding gene responsible for Na+ content variation under these conditions. A leucine to proline substitution at position 189 (L189P) in HvHKT1;5 disturbs its characteristic plasma membrane localisation and disrupts Na+ transport. Under low and moderate soil Na+, genotypes containing HvHKT1:5P189 accumulate high concentrations of Na+ but exhibit no evidence of toxicity. As the frequency of HvHKT1:5P189 increases significantly in cultivated European germplasm, we cautiously speculate that this non-functional variant may enhance yield potential in non-saline environments, possibly by offsetting limitations of low available K+.


Asunto(s)
Proteínas de Transporte de Catión/metabolismo , Regulación de la Expresión Génica de las Plantas , Hordeum/metabolismo , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Brotes de la Planta/metabolismo , Sodio/metabolismo , Proteínas de Transporte de Catión/genética , Estudio de Asociación del Genoma Completo , Hordeum/genética , Hordeum/crecimiento & desarrollo , Proteínas de Plantas/genética , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Brotes de la Planta/genética , Brotes de la Planta/crecimiento & desarrollo
16.
G3 (Bethesda) ; 10(6): 1823-1827, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32241919

RESUMEN

Barley (Hordeum vulgare) is one of the most important crops worldwide and is also considered a research model for the large-genome small grain temperate cereals. Despite genomic resources improving all the time, they are limited for the cv Golden Promise, the most efficient genotype for genetic transformation. We have developed a barley cv Golden Promise reference assembly integrating Illumina paired-end reads, long mate-pair reads, Dovetail Chicago in vitro proximity ligation libraries and chromosome conformation capture sequencing (Hi-C) libraries into a contiguous reference assembly. The assembled genome of 7 chromosomes and 4.13Gb in size, has a super-scaffold N50 after Chicago libraries of 4.14Mb and contains only 2.2% gaps. Using BUSCO (benchmarking universal single copy orthologous genes) as evaluation the genome assembly contains 95.2% of complete and single copy genes from the plant database. A high-quality Golden Promise reference assembly will be useful and utilized by the whole barley research community but will prove particularly useful for CRISPR-Cas9 experiments.


Asunto(s)
Hordeum , Genoma , Genómica , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Hordeum/genética
17.
Front Plant Sci ; 11: 619404, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33510760

RESUMEN

In flowering plants, successful germinal cell development and meiotic recombination depend upon a combination of environmental and genetic factors. To gain insights into this specialized reproductive development program we used short- and long-read RNA-sequencing (RNA-seq) to study the temporal dynamics of transcript abundance in immuno-cytologically staged barley (Hordeum vulgare) anthers and meiocytes. We show that the most significant transcriptional changes in anthers occur at the transition from pre-meiosis to leptotene-zygotene, which is followed by increasingly stable transcript abundance throughout prophase I into metaphase I-tetrad. Our analysis reveals that the pre-meiotic anthers are enriched in long non-coding RNAs (lncRNAs) and that entry to meiosis is characterized by their robust and significant down regulation. Intriguingly, only 24% of a collection of putative meiotic gene orthologs showed differential transcript abundance in at least one stage or tissue comparison. Argonautes, E3 ubiquitin ligases, and lys48 specific de-ubiquitinating enzymes were enriched in prophase I meiocyte samples. These developmental, time-resolved transcriptomes demonstrate remarkable stability in transcript abundance in meiocytes throughout prophase I after the initial and substantial reprogramming at meiosis entry and the complexity of the regulatory networks involved in early meiotic processes.

18.
BMC Genomics ; 20(1): 968, 2019 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-31829136

RESUMEN

BACKGROUND: The time required to analyse RNA-seq data varies considerably, due to discrete steps for computational assembly, quantification of gene expression and splicing analysis. Recent fast non-alignment tools such as Kallisto and Salmon overcome these problems, but these tools require a high quality, comprehensive reference transcripts dataset (RTD), which are rarely available in plants. RESULTS: A high-quality, non-redundant barley gene RTD and database (Barley Reference Transcripts - BaRTv1.0) has been generated. BaRTv1.0, was constructed from a range of tissues, cultivars and abiotic treatments and transcripts assembled and aligned to the barley cv. Morex reference genome (Mascher et al. Nature; 544: 427-433, 2017). Full-length cDNAs from the barley variety Haruna nijo (Matsumoto et al. Plant Physiol; 156: 20-28, 2011) determined transcript coverage, and high-resolution RT-PCR validated alternatively spliced (AS) transcripts of 86 genes in five different organs and tissue. These methods were used as benchmarks to select an optimal barley RTD. BaRTv1.0-Quantification of Alternatively Spliced Isoforms (QUASI) was also made to overcome inaccurate quantification due to variation in 5' and 3' UTR ends of transcripts. BaRTv1.0-QUASI was used for accurate transcript quantification of RNA-seq data of five barley organs/tissues. This analysis identified 20,972 significant differentially expressed genes, 2791 differentially alternatively spliced genes and 2768 transcripts with differential transcript usage. CONCLUSION: A high confidence barley reference transcript dataset consisting of 60,444 genes with 177,240 transcripts has been generated. Compared to current barley transcripts, BaRTv1.0 transcripts are generally longer, have less fragmentation and improved gene models that are well supported by splice junction reads. Precise transcript quantification using BaRTv1.0 allows routine analysis of gene expression and AS.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Hordeum/genética , Proteínas de Plantas/genética , Empalme Alternativo , Bases de Datos Genéticas , Regulación de la Expresión Génica de las Plantas , Análisis de Secuencia de ARN , Secuenciación del Exoma
19.
Plant Methods ; 15: 99, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31462905

RESUMEN

BACKGROUND: We developed and characterised a highly mutagenised TILLING population of the barley (Hordeum vulgare) cultivar Golden Promise. Golden Promise is the 'reference' genotype for barley transformation and a primary objective of using this cultivar was to be able to genetically complement observed mutations directly in order to prove gene function. Importantly, a reference genome assembly of Golden Promise has also recently been developed. As our primary interest was to identify mutations in genes involved in meiosis and recombination, to characterise the population we focused on a set of 46 genes from the literature that are possible meiosis gene candidates. RESULTS: Sequencing 20 plants from the population using whole exome capture revealed that the mutation density in this population is high (one mutation every 154 kb), and consequently even in this small number of plants we identified several interesting mutations. We also recorded some issues with seed availability and germination. We subsequently designed and applied a simple two-dimensional pooling strategy to identify mutations in varying numbers of specific target genes by Illumina short read pooled-amplicon sequencing and subsequent deconvolution. In parallel we assembled a collection of semi-sterile mutants from the population and used a custom exome capture array targeting the 46 candidate meiotic genes to identify potentially causal mutations. CONCLUSIONS: We developed a highly mutagenised barley TILLING population in the transformation competent cultivar Golden Promise. We used novel and cost-efficient screening approaches to successfully identify a broad range of potentially deleterious variants that were subsequently validated by Sanger sequencing. These resources combined with a high-quality genome reference sequence opens new possibilities for efficient functional gene validation.

20.
Plant J ; 98(6): 961-974, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31021020

RESUMEN

Phylogenetically related groups of species contain lineage-specific genes that exhibit no sequence similarity to any genes outside the lineage. We describe here that the Jekyll gene, required for sexual reproduction, exists in two much diverged allelic variants, Jek1 and Jek3. Despite low similarity, the Jek1 and Jek3 proteins share identical signal peptides, conserved cysteine positions and direct repeats. The Jek1/Jek3 sequences are located at the same chromosomal locus and inherited in a monogenic Mendelian fashion. Jek3 has a similar expression as Jek1 and complements the Jek1 function in Jek1-deficient plants. Jek1 and Jek3 allelic variants were almost equally distributed in a collection of 485 wild and domesticated barley accessions. All domesticated barleys harboring the Jek1 allele belong to single haplotype J1-H1 indicating a genetic bottleneck during domestication. Domesticated barleys harboring the Jek3 allele consisted of three haplotypes. Jekyll-like sequences were found only in species of the closely related tribes Bromeae and Triticeae but not in other Poaceae. Non-invasive magnetic resonance imaging revealed intrinsic grain structure in Triticeae and Bromeae, associated with the Jekyll function. The emergence of Jekyll suggests its role in the separation of the Bromeae and Triticeae lineages within the Poaceae and identifies the Jekyll genes as lineage-specific.


Asunto(s)
Variación Genética , Proteínas de Plantas/genética , Poaceae/genética , Alelos , Secuencia de Aminoácidos , Evolución Biológica , Geografía , Haplotipos , Hordeum/citología , Hordeum/genética , Imagen por Resonancia Magnética , Familia de Multigenes , Filogenia , Proteínas de Plantas/metabolismo , Poaceae/citología , Reproducción , Semillas/citología , Semillas/genética , Alineación de Secuencia , Especificidad de la Especie , Triticum/citología , Triticum/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA