RESUMEN
Importance: Functional brain networks are associated with both behavior and genetic factors. To uncover clinically translatable mechanisms of psychopathology, it is critical to define how the spatial organization of these networks relates to genetic risk during development. Objective: To determine the relationship between transdiagnostic polygenic risk scores (PRSs), personalized functional brain networks (PFNs), and overall psychopathology (p-factor) during early adolescence. Design: The Adolescent Brain Cognitive Development (ABCD) Study is an ongoing longitudinal cohort study of 21 collection sites across the United States. Here, we conduct a cross-sectional analysis of ABCD baseline data, collected 2017-2018. Setting: The ABCD Study ® is a multi-site community-based study. Participants: The sample is largely recruited through school systems. Exclusion criteria included severe sensory, intellectual, medical, or neurological issues that interfere with protocol and scanner contraindications. Split-half subsets were used for cross-validation, matched on age, ethnicity, family structure, handedness, parental education, site, sex, and anesthesia exposure. Exposures: Polygenic risk scores of transdiagnostic genetic factors F1 (PRS-F1) and F2 (PRS-F2) derived from adults in Psychiatric Genomic Consortium and UK Biobanks datasets. PRS-F1 indexes liability for common psychiatric symptoms and disorders related to mood disturbance; PRS-F2 indexes liability for rarer forms of mental illness characterized by mania and psychosis. Main Outcomes and Measures: (1) P-factor derived from bifactor models of youth- and parent-reported mental health assessments. (2) Person-specific functional brain network topography derived from functional magnetic resonance imaging (fMRI) scans. Results: Total participants included 11,873 youths ages 9-10 years old; 5,678 (47.8%) were female, and the mean (SD) age was 9.92 (0.62) years. PFN topography was found to be heritable (N=7,459, 57.06% of vertices h 2 p FDR <0.05, mean h 2 =0.35). PRS-F1 was associated with p-factor (N=5,815, r=0.12, 95% CI [0.09-0.15], p<0.001). Interindividual differences in functional network topography were associated with p-factor (N=7,459, mean r=0.12), PRS-F1 (N=3,982, mean r=0.05), and PRS-F2 (N=3,982, mean r=0.08). Cortical maps of p-factor and PRS-F1 regression coefficients were highly correlated (r=0.7, p=0.003). Conclusions and Relevance: Polygenic risk for transdiagnostic adulthood psychopathology is associated with both p-factor and heritable PFN topography during early adolescence. These results advance our understanding of the developmental drivers of psychopathology.
RESUMEN
Copy-number variants (CNVs) have been implicated in a variety of neuropsychiatric and cognitive phenotypes. We found that deleterious CNVs are less prevalent in non-European ancestry groups than they are in European ancestry groups of both the UK Biobank (UKBB) and a US replication cohort (SPARK). We also identified specific recurrent CNVs that consistently differ in frequency across ancestry groups in both the UKBB and SPARK. These ancestry-related differences in CNV prevalence present in both an unselected community population and a family cohort enriched with individuals diagnosed with autism spectrum disorder (ASD) strongly suggest that genetic ancestry should be considered when probing associations between CNVs and health outcomes.
Asunto(s)
Trastorno del Espectro Autista , Variaciones en el Número de Copia de ADN , Humanos , Variaciones en el Número de Copia de ADN/genética , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/epidemiología , Masculino , Femenino , Estudios de Cohortes , Población Blanca/genética , Predisposición Genética a la EnfermedadRESUMEN
Background: Allostatic load is the cumulative "wear and tear" on the body due to chronic adversity. We aimed to test poly-environmental (exposomic) and polygenic contributions to allostatic load and their combined contribution to early adolescent mental health. Methods: We analyzed data on N = 5,035 diverse youth (mean age 12) from the Adolescent Brain Cognitive Development Study (ABCD). Using dimensionality reduction method, we calculated and overall allostatic load score (AL) using body mass index [BMI], waist circumference, blood pressure, blood glycemia, blood cholesterol, and salivary DHEA. Childhood exposomic risk was quantified using multi-level environmental exposures before age 11. Genetic risk was quantified using polygenic risk scores (PRS) for metabolic system susceptibility (type 2 diabetes [T2D]) and stress-related psychiatric disease (major depressive disorder [MDD]). We used linear mixed effects models to test main, additive, and interactive effects of exposomic and polygenic risk (independent variables) on AL (dependent variable). Mediation models tested the mediating role of AL on the pathway from exposomic and polygenic risk to youth mental health. Models adjusted for demographics and genetic principal components. Results: We observed disparities in AL with non-Hispanic White youth having significantly lower AL compared to Hispanic and Non-Hispanic Black youth. In the diverse sample, childhood exposomic burden was associated with AL in adolescence (beta=0.25, 95%CI 0.22-0.29, P<.001). In European ancestry participants (n=2,928), polygenic risk of both T2D and depression was associated with AL (T2D-PRS beta=0.11, 95%CI 0.07-0.14, P<.001; MDD-PRS beta=0.05, 95%CI 0.02-0.09, P=.003). Both polygenic scores showed significant interaction with exposomic risk such that, with greater polygenic risk, the association between exposome and AL was stronger. AL partly mediated the pathway to youth mental health from exposomic risk and from MDD-PRS, and fully mediated the pathway from T2D-PRS. Conclusions: AL can be quantified in youth using anthropometric and biological measures and is mapped to exposomic and polygenic risk. Main and interactive environmental and genetic effects support a diathesis-stress model. Findings suggest that both environmental and genetic risk be considered when modeling stress-related health conditions.
RESUMEN
Both psychiatric vulnerability and cortical structure are shaped by the cumulative effect of common genetic variants across the genome. However, the shared genetic underpinnings between psychiatric disorders and brain structural phenotypes, such as thickness and surface area of the cerebral cortex, remains elusive. In this study, we employed pleiotropy-informed conjunctional false discovery rate analysis to investigate shared loci across genome-wide association scans of regional cortical thickness, surface area, and seven psychiatric disorders in approximately 700,000 individuals of European ancestry. Aggregating regional measures, we identified 50 genetic loci shared between psychiatric disorders and surface area, as well as 26 genetic loci shared with cortical thickness. Risk alleles exhibited bidirectional effects on both cortical thickness and surface area, such that some risk alleles for each disorder increased regional brain size while other risk alleles decreased regional brain size. Due to bidirectional effects, in many cases we observed extensive pleiotropy between an imaging phenotype and a psychiatric disorder even in the absence of a significant genetic correlation between them. The impact of genetic risk for psychiatric disorders on regional brain structure did exhibit a consistent pattern across highly comorbid psychiatric disorders, with 80% of the genetic loci shared across multiple disorders displaying consistent directions of effect. Cortical patterning of genetic overlap revealed a hierarchical genetic architecture, with the association cortex and sensorimotor cortex representing two extremes of shared genetic influence on psychiatric disorders and brain structural variation. Integrating multi-scale functional annotations and transcriptomic profiles, we observed that shared genetic loci were enriched in active genomic regions, converged on neurobiological and metabolic pathways, and showed differential expression in postmortem brain tissue from individuals with psychiatric disorders. Cumulatively, these findings provide a significant advance in our understanding of the overlapping polygenic architecture between psychopathology and cortical brain structure.
RESUMEN
OBJECTIVE: Copy number variants (CNVs) are well-known genetic pleiotropic risk factors for multiple neurodevelopmental and psychiatric disorders (NPDs), including autism (ASD) and schizophrenia. Little is known about how different CNVs conferring risk for the same condition may affect subcortical brain structures and how these alterations relate to the level of disease risk conferred by CNVs. To fill this gap, the authors investigated gross volume, vertex-level thickness, and surface maps of subcortical structures in 11 CNVs and six NPDs. METHODS: Subcortical structures were characterized using harmonized ENIGMA protocols in 675 CNV carriers (CNVs at 1q21.1, TAR, 13q12.12, 15q11.2, 16p11.2, 16p13.11, and 22q11.2; age range, 6-80 years; 340 males) and 782 control subjects (age range, 6-80 years; 387 males) as well as ENIGMA summary statistics for ASD, schizophrenia, attention deficit hyperactivity disorder, obsessive-compulsive disorder, bipolar disorder, and major depression. RESULTS: All CNVs showed alterations in at least one subcortical measure. Each structure was affected by at least two CNVs, and the hippocampus and amygdala were affected by five. Shape analyses detected subregional alterations that were averaged out in volume analyses. A common latent dimension was identified, characterized by opposing effects on the hippocampus/amygdala and putamen/pallidum, across CNVs and across NPDs. Effect sizes of CNVs on subcortical volume, thickness, and local surface area were correlated with their previously reported effect sizes on cognition and risk for ASD and schizophrenia. CONCLUSIONS: The findings demonstrate that subcortical alterations associated with CNVs show varying levels of similarities with those associated with neuropsychiatric conditions, as well distinct effects, with some CNVs clustering with adult-onset conditions and others with ASD. These findings provide insight into the long-standing questions of why CNVs at different genomic loci increase the risk for the same NPD and why a single CNV increases the risk for a diverse set of NPDs.
Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Esquizofrenia , Masculino , Adulto , Humanos , Niño , Adolescente , Adulto Joven , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Variaciones en el Número de Copia de ADN/genética , Esquizofrenia/genética , Encéfalo/diagnóstico por imagen , Trastorno por Déficit de Atención con Hiperactividad/genética , GenómicaRESUMEN
BACKGROUND: Our understanding of the impact of copy number variants (CNVs) on psychopathology and their joint influence with polygenic risk scores (PRSs) remains limited. METHODS: The UK Biobank recruited 502,534 individuals ages 37 to 73 years living in the United Kingdom between 2006 and 2010. After quality control, genotype data from 459,855 individuals were available for CNV calling. A total of 61 commonly studied recurrent neuropsychiatric CNVs were selected for analyses and examined individually and in aggregate (any CNV, deletion, or duplication). CNV risk scores were used to quantify intolerance of CNVs to haploinsufficiency. Major depressive disorder and generalized anxiety disorder PRSs were generated for White British individuals (N = 408,870). Mood/anxiety factor scores were generated using item-level questionnaire data (N = 501,289). RESULTS: CNV carriers showed higher mood/anxiety scores than noncarriers, with the largest effects seen for intolerant deletions. A total of 11 individual deletions and 8 duplications were associated with higher mood/anxiety. Carriers of the 9p24.3 (DMRT1) duplication showed lower mood/anxiety. Associations remained significant for most CNVs when excluding individuals with psychiatric diagnoses. Nominally significant CNV × PRS interactions provided preliminary evidence that associations between select individual CNVs, but not CNVs in aggregate, and mood/anxiety may be modulated by PRSs. CONCLUSIONS: CNVs associated with risk for psychiatric disorders showed small to large effects on dimensional mood/anxiety scores in a general population cohort, even when excluding individuals with psychiatric diagnoses. CNV × PRS interactions showed that associations between select CNVs and mood/anxiety may be modulated by PRSs.
Asunto(s)
Trastorno Depresivo Mayor , Trastornos Mentales , Humanos , Variaciones en el Número de Copia de ADN/genética , Bancos de Muestras Biológicas , Trastornos Mentales/genética , Reino Unido , Factores de RiesgoRESUMEN
BACKGROUND: Polygenicity and genetic heterogeneity pose great challenges for studying psychiatric conditions. Genetically informed approaches have been implemented in neuroimaging studies to address this issue. However, the effects on functional connectivity of rare and common genetic risks for psychiatric disorders are largely unknown. Our objectives were to estimate and compare the effect sizes on brain connectivity of psychiatric genomic risk factors with various levels of complexity: oligogenic copy number variants (CNVs), multigenic CNVs, and polygenic risk scores (PRSs) as well as idiopathic psychiatric conditions and traits. METHODS: Resting-state functional magnetic resonance imaging data were processed using the same pipeline across 9 datasets. Twenty-nine connectome-wide association studies were performed to characterize the effects of 15 CNVs (1003 carriers), 7 PRSs, 4 idiopathic psychiatric conditions (1022 individuals with autism, schizophrenia, bipolar conditions, or attention-deficit/hyperactivity disorder), and 2 traits (31,424 unaffected control subjects). RESULTS: Effect sizes on connectivity were largest for psychiatric CNVs (estimates: 0.2-0.65 z score), followed by psychiatric conditions (0.15-0.42), neuroticism and fluid intelligence (0.02-0.03), and PRSs (0.01-0.02). Effect sizes of CNVs on connectivity were correlated to their effects on cognition and risk for disease (r = 0.9, p = 5.93 × 10-6). However, effect sizes of CNVs adjusted for the number of genes significantly decreased from small oligogenic to large multigenic CNVs (r = -0.88, p = 8.78 × 10-6). PRSs had disproportionately low effect sizes on connectivity compared with CNVs conferring similar risk for disease. CONCLUSIONS: Heterogeneity and polygenicity affect our ability to detect brain connectivity alterations underlying psychiatric manifestations.
Asunto(s)
Heterogeneidad Genética , Psiquiatría , Humanos , Predisposición Genética a la Enfermedad , Herencia Multifactorial/genética , Encéfalo/diagnóstico por imagen , Variaciones en el Número de Copia de ADN/genética , Estudio de Asociación del Genoma CompletoRESUMEN
Pleiotropy occurs when a genetic variant influences more than one trait. This is a key property of the genomic architecture of psychiatric disorders and has been observed for rare and common genomic variants. It is reasonable to hypothesize that the microscale genetic overlap (pleiotropy) across psychiatric conditions and cognitive traits may lead to similar overlaps at the macroscale brain level such as large-scale brain functional networks. We took advantage of brain connectivity, measured by resting-state functional MRI to measure the effects of pleiotropy on large-scale brain networks, a putative step from genes to behaviour. We processed nine resting-state functional MRI datasets including 32 726 individuals and computed connectome-wide profiles of seven neuropsychiatric copy-number-variants, five polygenic scores, neuroticism and fluid intelligence as well as four idiopathic psychiatric conditions. Nine out of 19 pairs of conditions and traits showed significant functional connectivity correlations (rFunctional connectivity), which could be explained by previously published levels of genomic (rGenetic) and transcriptomic (rTranscriptomic) correlations with moderate to high concordance: rGenetic-rFunctional connectivity = 0.71 [0.40-0.87] and rTranscriptomic-rFunctional connectivity = 0.83 [0.52; 0.94]. Extending this analysis to functional connectivity profiles associated with rare and common genetic risk showed that 30 out of 136 pairs of connectivity profiles were correlated above chance. These similarities between genetic risks and psychiatric disorders at the connectivity level were mainly driven by the overconnectivity of the thalamus and the somatomotor networks. Our findings suggest a substantial genetic component for shared connectivity profiles across conditions and traits, opening avenues to delineate general mechanisms-amenable to intervention-across psychiatric conditions and genetic risks.
Asunto(s)
Conectoma , Trastornos Mentales , Humanos , Pleiotropía Genética , Imagen por Resonancia Magnética , Trastornos Mentales/diagnóstico por imagen , Trastornos Mentales/genética , Encéfalo/diagnóstico por imagenRESUMEN
PURPOSE: Suicidal ideation and attempts in youth are a growing health concern, and more data are needed regarding their biological underpinnings. Asthma is a common chronic inflammatory disorder in youth and has been associated with suicidal ideation and attempts in adolescent and adult populations, but data in younger children and early adolescents are lacking. We wished to study associations of asthma with childhood suicidality considering asthma's potential as a clinically relevant model for childhood chronic immune dysregulation. METHODS: Using data from the Adolescent Brain Cognitive Development (ABCD) Study (n = 11,876, 47.8% female, mean age 9.9 years at baseline assessment and 12.0 years at two-year follow-up), we assessed associations between asthma and suicidal ideation and attempts through baseline to two-year follow-up. RESULTS: Asthma history as defined by parent report (n = 2282, 19.2% of study population) was associated with suicide attempts (SA) (odds ratio (OR) = 1.44, p = 0.01), and this association remained significant even when controlling for demographics, socioeconomic factors, and environmental factors (OR = 1.46, p = 0.028). History of asthma attacks was associated with both suicidal ideation (SI) and SA when controlling for demographics, socioeconomic factors, and environmental factors (OR = 1.27, p = 0.042; OR = 1.83, p = 0.004, respectively). The association of asthma attack with SA remained significant when controlling for self-reported psychopathology (OR = 1.92, p = 0.004). The total number of asthma attacks was associated with both SI and SA (OR = 1.03, p = 0.043; OR = 1.06, p = 0.05, respectively). CONCLUSIONS: Findings suggest an association between asthma and suicidality in early adolescence. Further research is needed to investigate mechanisms underlying this relationship.
RESUMEN
Background: Adolescent suicide is a major health problem in the US marked by a recent increase in risk of suicidal behavior among Black/African American youth. While genetic factors partly account for familial transmission of suicidal behavior, it is not clear whether polygenic risk scores of suicide attempt can contribute to suicide risk classification. Objectives: To evaluate the contribution of a polygenic risk score for suicide attempt (PRS-SA) in explaining variance in suicide attempt by early adolescence. Methods: We studied N = 5,214 non-related youth of African and European genetic ancestry from the Adolescent Brain Cognitive Development (ABCD) Study (ages 8.9-13.8 years) who were evaluated between 2016 and 2021. Regression models tested associations between PRS-SA and parental history of suicide attempt/death with youth-reported suicide attempt. Covariates included age and sex. Results: Over three waves of assessments, 182 youth (3.5%) reported a past suicide attempt, with Black youth reporting significantly more suicide attempts than their White counterparts (6.1 vs. 2.8%, p < 0.001). PRS-SA was associated with suicide attempt [odds ratio (OR) = 1.3, 95% confidence interval (CI) 1.1-1.5, p = 0.001]. Parental history of suicide attempt/death was also associated with youth suicide attempt (OR = 3.1, 95% CI, 2.0-4.7, p < 0.001). PRS-SA remained significantly associated with suicide attempt even when accounting for parental history (OR = 1.29, 95% CI = 1.1-1.5, p = 0.002). In European ancestry youth (n = 4,128), inclusion of PRS-SA in models containing parental history explained more variance in suicide attempt compared to models that included only parental history (ΔR 2 = 0.7%, p = 0.009). Conclusions: Findings suggest that PRS-SA may be useful for youth suicide risk classification in addition to established risk factors.
RESUMEN
Importance: Psychiatric and cognitive phenotypes have been associated with a range of specific, rare copy number variants (CNVs). Moreover, IQ is strongly associated with CNV risk scores that model the predicted risk of CNVs across the genome. But the utility of CNV risk scores for psychiatric phenotypes has been sparsely examined. Objective: To determine how CNV risk scores, common genetic variation indexed by polygenic scores (PGSs), and environmental factors combine to associate with cognition and psychopathology in a community sample. Design, Setting, and Participants: The Philadelphia Neurodevelopmental Cohort is a community-based study examining genetics, psychopathology, neurocognition, and neuroimaging. Participants were recruited through the Children's Hospital of Philadelphia pediatric network. Participants with stable health and fluency in English underwent genotypic and phenotypic characterization from November 5, 2009, through December 30, 2011. Data were analyzed from January 1 through July 30, 2021. Exposures: The study examined (1) CNV risk scores derived from models of burden, predicted intolerance, and gene dosage sensitivity; (2) PGSs from genomewide association studies related to developmental outcomes; and (3) environmental factors, including trauma exposure and neighborhood socioeconomic status. Main Outcomes and Measures: The study examined (1) neurocognition, with the Penn Computerized Neurocognitive Battery; (2) psychopathology, with structured interviews based on the Schedule for Affective Disorders and Schizophrenia for School-Age Children; and (3) brain volume, with magnetic resonance imaging. Results: Participants included 9498 youths aged 8 to 21 years; 4906 (51.7%) were female, and the mean (SD) age was 14.2 (3.7) years. After quality control, 18â¯185 total CNVs greater than 50 kilobases (10â¯517 deletions and 7668 duplications) were identified in 7101 unrelated participants genotyped on Illumina arrays. In these participants, elevated CNV risk scores were associated with lower overall accuracy on cognitive tests (standardized ß = 0.12; 95% CI, 0.10-0.14; P = 7.41 × 10-26); lower accuracy across a range of cognitive subdomains; increased overall psychopathology; increased psychosis-spectrum symptoms; and higher deviation from a normative developmental model of brain volume. Statistical models of developmental outcomes were significantly improved when CNV risk scores were combined with PGSs and environmental factors. Conclusions and Relevance: In this study, elevated CNV risk scores were associated with lower cognitive ability, higher psychopathology including psychosis-spectrum symptoms, and greater deviations from normative magnetic resonance imaging models of brain development. Together, these results represent a step toward synthesizing rare genetic, common genetic, and environmental factors to understand clinically relevant outcomes in youth.
Asunto(s)
Variaciones en el Número de Copia de ADN , Trastornos Psicóticos , Adolescente , Encéfalo/diagnóstico por imagen , Niño , Cognición , Variaciones en el Número de Copia de ADN/genética , Femenino , Humanos , Masculino , Trastornos Psicóticos/genética , Trastornos Psicóticos/psicología , Factores de RiesgoRESUMEN
Polygenic scores (PGS) are commonly evaluated in terms of their predictive accuracy at the population level by the proportion of phenotypic variance they explain. To be useful for precision medicine applications, they also need to be evaluated at the individual level when phenotypes are not necessarily already known. We investigated the stability of PGS in European American (EUR) and African American (AFR)-ancestry individuals from the Philadelphia Neurodevelopmental Cohort and the Adolescent Brain Cognitive Development study using different discovery genome-wide association study (GWAS) results for post-traumatic stress disorder (PTSD), type 2 diabetes (T2D), and height. We found that pairs of EUR-ancestry GWAS for the same trait had genetic correlations >0.92. However, PGS calculated from pairs of same-ancestry and different-ancestry GWAS had correlations that ranged from <0.01 to 0.74. PGS stability was greater for height than for PTSD or T2D. A series of height GWAS in the UK Biobank suggested that correlation between PGS is strongly dependent on the extent of sample overlap between the discovery GWAS. Focusing on the upper end of the PGS distribution, different discovery GWAS do not consistently identify the same individuals in the upper quantiles, with the best case being 60% of individuals above the 80th percentile of PGS overlapping from one height GWAS to another. The degree of overlap decreases sharply as higher quantiles, less heritable traits, and different-ancestry GWAS are considered. PGS computed from different discovery GWAS have only modest correlation at the individual level, underscoring the need to proceed cautiously with integrating PGS into precision medicine applications.
RESUMEN
Suicidal ideation and attempts (i.e., suicidality) are complex behaviors driven by environmental stress, genetic susceptibility, and their interaction. Preadolescent suicidality is a major health problem with rising rates, yet its underlying biology is understudied. Here we studied effects of genetic stress susceptibility, approximated by the polygenic risk score (PRS) for post-traumatic-stress-disorder (PTSD), on preadolescent suicidality in participants from the Adolescent Brain Cognitive Development (ABCD) Study®. We further evaluated PTSD-PRS effects on suicidality in the presence of environmental stressors that are established suicide risk factors. Analyses included both European and African ancestry participants using PRS calculated based on summary statistics from ancestry-specific genome-wide association studies. In European ancestry participants (N = 4,619, n = 378 suicidal), PTSD-PRS was associated with preadolescent suicidality (odds ratio [OR] = 1.12, 95%CI 1-1.25, p = 0.038). Results in African ancestry participants (N = 1,334, n = 130 suicidal) showed a similar direction but were not statistically significant (OR = 1.21, 95%CI 0.93-1.57, p = 0.153). Sensitivity analyses using non-psychiatric polygenic score for height and using cross-ancestry PTSD-PRS did not reveal any association with suicidality, supporting the specificity of the association of ancestry-specific PTSD-PRS with suicidality. Environmental stressors were robustly associated with suicidality across ancestries with moderate effect size for negative life events and family conflict (OR 1.27-1.6); and with large effect size (OR â¼ 4) for sexual-orientation discrimination. When combined with environmental factors, PTSD-PRS showed marginal additive effects in explaining variability in suicidality, with no evidence for G × E interaction. Results support use of cross-phenotype PRS, specifically stress-susceptibility, as a genetic marker for suicidality risk early in the lifespan.